Борьба с укорочением теломер. Как замедлить старение клеток и удлинить теломеры Как измерить теломеры без вреда

Защитные «колпачки» на концах хромосом, которые укорачиваются при каждом делении клетки. Теломеры состоят из последовательности нуклеотидов, которая «недочитывается» при каждом последующем делении и поэтому становится все короче. Теломеры могут надстраиваться - это умеет делать фермент теломераза , но она активна только в стволовых и в раковых клетках. За открытие работы теломеразы Элизабет Блэкбёрн, Кэрол Грейдер и в 2009 году получили Нобелевскую премию по физиологии и медицине.

Теломеры считают показателем старения, «термометром для измерения возраста».

Существует множество исследований, в которых длину теломер связывают с биологическим возрастом и предрасположенностью к разнообразным заболеваниям включая рак, инсульт, деменцию, сердечно-сосудистые заболевания, диабет.

Разработан даже тест для оценки потенциала здоровья по длине теломер.

В общем, чем длиннее теломеры в клетках, тем больше у человека потенциал долголетия и здоровья. Но удлинять теломеры, активизируя фермент теломеразу, задача небезопасная, так как она связана с риском перерождения клетки в раковую.

Поэтому результаты, полученные учеными Калифорнийского университета в Сан-Франциско и опубликованные в журнале The Lancet Oncology , выглядят удивительно. Исследователи показали, что теломеры могут удлиниться очень простым способом, без всяких биохимических воздействий - всего лишь изменением образа жизни.

Рецепт удлинения: правильная диета, физическая активность, контроль стресса и социальная поддержка.

«Люди часто думают: у меня плохие гены, и я ничего не могу с этим поделать, это моя судьба, — говорит Дин Орниш, профессор клинической медицины, руководитель исследования. - Но наша работа показала, что теломеры могут удлиняться, когда люди просто меняют свой образ жизни. А длинные теломеры означают меньше болезней и долгую жизнь».

В течение пяти лет специалисты наблюдали за 35 мужчинами с локализованной раковой опухолью простаты, находившейся на ранней стадии. В ходе исследования у них измеряли длину теломер и оценивали активность теломеразы.

10 пациентов из 35 изменили образ жизни. Они включили в свой рацион много овощей и фруктов, зерновые продукты, уменьшили количество жиров и сахара. Занялись физическими упражнениями или просто ходили не менее 30 минут в день. Приняли меры к тому, чтобы научиться контролировать стресс, чему помогала йога, медитация. Пациенты также посещали сеансы групповой терапии, где получали социальную поддержку.

Другие 25 человек не внесли никаких изменений в свой образ жизни.

Результаты удивили даже исследователей - в группе пациентов, перешедших на здоровый образ жизни, за пять лет теломеры удлинились в среднем на 10%. Причем, чем больше изменений произошло в образе жизни, тем длиннее стали теломеры.

В то же время в контрольной группе пациентов теломеры за пять лет жизни, наоборот, укоротились примерно на 3%.

Ученые считают, что этот феномен не ограничивается только пациентами с раком простаты, но должен распространяться и на всех остальных людей.

В предыдущем исследовании, которое было проведено в 2008 году, участники меняли образ жизни всего лишь на три месяца, и за это время ученые обнаружили в их клетках повышение активности теломеразы. Теперь же этот эффект удалось повторить на большем отрезке времени.

«Поскольку укорачивание теломер увеличивает риск развития множества хронических болезней, — говорит участник исследования Питер Кэррол, — мы полагаем, что удлинение теломер может предохранять от этих болезней и, возможно, увеличивать продолжительность жизни».

1674 0

Каждое деление клетки требует копирования ее ДНК. За это отвечает фермент ДНК-полимераза.

Он несколько напоминает поезд: движется по рельсам в виде двойной спирали ДНК и "буква за буквой" воспроизводит ее нуклеотидную последовательность, изготовляя идентичную молекулу, которая остается рядом с оригиналом.

Однако у ДНК-полимеразы есть существенный недостаток. По причинам, углубляться в которые нет необходимости, вся молекула ДНК этим ферментом никогда не копируется.

Иными словами, при каждом клеточном делении небольшой ее участок теряется, и скопированная цепочка оказывается короче исходной. Конец хромосомы постепенно "обгрызается".

Вторая возникающая с хромосомами проблема - их тенденция часто рваться из-за действия радиации и других неблагоприятных факторов. Клетке приходится сшивать возникающие обрывки. При этом, разумеется, она ни в коем случае не должна путать их с концами интактных хромосом, и, следовательно, ей надо каким-то образом различать эти два типа участков ДНК.

Частично такая проблема решается природой с помощью теломер . Эти концевые участки хромосом не содержат генетической информации, представляя собой монотонные повторы короткой последовательности нуклеотидов. Их укорочение при многократных копированиях ДНК и клеточных деления никакого вреда организму не приносит - пока теломеры остаются достаточно длинными. однако ее полного исчезновения бояться не стоит, поскольку существует фермент теломераза, который удлиняет эту бессмысленную концевую последовательность ДНК.

Точнее говоря, он решает сразу две проблемы. С одной стороны, экспрессирующие теломеразу клетки восстанавливают свои укорачивающиеся при каждом делении теломеры и могут делиться неограниченно долго. С другой стороны, сохранение теломер не позволяет механизму, устраняющему разрывы ДНК, сшивать разные хромосомы: бессмысленные концевые повторы распознаются соответствующими ферментами и оставляются в покое.

Люди и некоторые другие виды остроумно используют эту теломернотеломеразную систему для защиты от рака. Злокачественные клетки убивают организм только после многократного деления. Без теломеразы это невозможно: если теломеры не будут восстанавливаться, они постепенно исчезнут, концы хромосом, перестав отличаться от внутрихромосомных разрывов, в конце концов, соединятся, а в результате раковые клетки как минимум не смогут больше делиться. Поэтому кодирующие теломеразу гены в них по мере возможности отключаются.

Для восстановления активности этого фермента и, соответственно, способности раковых клеток к делению потребовалось бы много очень "удачных" мутаций. Хотя этот вопрос изучен меньше, у пожилых носителей цитомегаловируса (ЦМВ) наблюдается также избыток дефектных СD4-лимфоцитов, называемых Т-хелперами, которые помогают другим компонентам иммунной системы организовать контрнаступление на проникшие в организм патогены. Иными словами, у этих внешне здоровых людей происходит такая же клональная экспансия нацеленных на ЦМВ, но лишенных рецептора CD28 СD4-клеток, как и в их СD8-популяции. Результат - аналогичное перенасыщение специализированными лимфоцитами, не реагирующими на активацию антиген-презентирующими клетками.

Не активируясь ими, эти дефектные Т-хелперы не выполняют своей функции, т.е. не обеспечивают мобилизацию на борьбу с врагом СD8-лимфоцитов и других иммунных клеток. Такая ситуация - вместе с упоминавшейся выше неспособностью Т-киллеров эффективно атаковать свои мишени - дает цитомегаловирус беспрепятственно размножаться. Это ведет к дополнительным клональным экспансиям и дальнейшему усугублению иммунной дисфункции.

Клонально размножившиеся ЦМВ-специфичные СD8-клетки анергичны (неэффективны) и с других точек зрения. При первом заражении мышиным вариантом этого вируса молодые мыши вырабатывают очень активные Т-киллеры, распознающие не менее 24 его антигенов. Однако, когда инфекция становится хронической, их нацеленные на ЦМВ спецподразделения сокращаются до клонов, реагирующих в среднем лишь на пять таких белков. Кроме того, у пожилых людей с цитомегаловирусом анергические СD8-клетки реагируют на вирус слабее, чем у молодых его носителей, вырабатывая значительно меньше гамма-интерферона, одного из важнейших химических усилителей иммунологического ответа.

Плохие полководцы хороших армий

Вероятно, неспособность анергических Т-лимфоцитов бороться с ЦМВ-инфекцией ведет ко многим другим типичным для пожилых людей иммунологическим дисфункциям, которые нельзя объяснить никаким непосредственным эффектом старения этих клеток. Некоторые из таких эффектов можно было бы ожидать в связи с изменением выработки ими цитокинов, влияющих на активность прочих бойцов врожденной и адаптивной частей иммунной системы, однако другие вызывают гораздо более стойкие последствия, чем просто проблемы с химической сигнализацией.

Например, согласно широко распространенному сейчас мнению, старение Т-клеток объясняет возрастное снижение эффективности В-лимфоцитов, синтезирующих антитела к чужим антигенам и метящих таким образом патогены как мишени для разрушения другими клетками. Для созревания и выработки антител В-клеткам необходимы сигналы от Т-хелперов, поэтому доказательство того, что старость Т-клеток вызывает снижение эффективности В-лимфоцитарной системы, независимое от ее собственного старения, было лишь вопросом времени.

К сожалению, никто пока не выяснял, обусловлен ли такой эффект индуцированной цитомегаловирусом клональной экспансией Т-лимфоцитов, играющей важнейшую роль в развитии прочих аспектов старения всей их популяции. В результате мы не знаем, насколько сильно влияет на В-клетки такой специфический феномен, как анергизация Т-клеток.

Даже если отвлечься от механистических объяснений и молекулярно-биологических механизмов, реальное влияние ползучего подтачивания всей иммунной системы анергическими СD8-клонами на человеческое здоровье становится очевидным при изучении конкретных результатов этого процесса. Опыты на животных показывают, что возрастная клональная экспансия отдельных СD8-субпопуляций снижает разнообразие присутствующих в организме Т-клеток, а в итоге и их способность обеспечивать эффективную иммунную защиту. Примеры аналогичных этому эффектов у нашего с вами вида - ухудшение СD8-ответа на прививки от гриппа и происходящее несколько позже ослабление Т-клеточного иммунитета против вируса Эпштейна-Барр у людей с клональной экспансией ЦМВ-специфичных клеток памяти.

Подсчет потерь

Даже если бы влияние на организм клонов анергических Т-лимфоцитов ограничивалось повышением заболеваемости и смертности от инфекционных болезней, у нас было достаточно причин желать избавления от этих клеток. Однако есть достаточно веская причина полагать, что они способствуют также возрастному ослаблению организма, которые не находит очевидного иммунологического объяснения.

Прежде всего, у пожилых людей, пострадавших от гриппа или спровоцированной им пневмонии, наблюдаются удивительно долгие их последствия, существенно ускоряющие прочие патологические процессы и движение человека в сторону старческой беспомощности, а в конечном итоге и на кладбище. По многим данным, перенесенный в солидном возрасте грипп повышает риск смерти от неожиданных причин типа инфаркта миокарда и инсульта, а также от как будто не связанных с этой инфекцией респираторных заболеваний; кроме того, обостряется течение застойной сердечной недостаточности.

Далее, такое долгое выздоровление биологически старых людей от гриппа, накладываясь на их общую слабость, обусловленную другими аспектами старения, вероятно, способствует серьезной, зачастую пожизненной функциональной деградации и инвалидизации. Грипп нередко укладывает пожилого человека в больницу, порой на целых три недели, а исследования показывают, что каждый день постельного режима означает для него потерю до 5% мышечной силы и 1% аэробической выносливости. Однако, видя, как женщина в возрасте с трудом открывает дверь или, поскользнувшись на льду, ломает себе шейку бедра, никто не думает о перенесенной ею простуде или иммунологическом старении.

Можно вспомнить и о других старческих недугах, в развитии которых, по-видимому, существенную роль играют клоны анергических Т-клеток, но свидетельства этого не настолько очевидны. Одна из таких патологий - остеопороз. У пожилых женщин с остеопорозными переломами обнаружены более высокие уровни анергических СD8-клеток, чем у их сверстниц со здоровыми костями. При этом некоторые молекулярные механизмы наводят на мысль, что обилие таких дефектных лимфоцитов являются именно причиной, а не следствием снижение плотности и прочности костной ткани.

Кроме того, несмотря на сравнительную спекулятивность данного предположения, ползучая "клонализация" Т-клеточной популяции могла бы влиять даже на ход атеросклероза. Она ведет к хроническому воспалительному процессу, который, как известно, портит артерии, способствуя возникновению инфаркта миокарда. В пользу этой гипотезы говорит более высокий, чем у здоровых людей, уровень анергических СD8-клеток у пациентов с ишемической болезнью сердца - как при ЦМВ-инфекции, так и в ее отсутствие. Таким образом, ослабление иммунной системы является, по-видимому, как облегчающим фактором, так и результатом инфекционного поражения артерий, которое в свою очередь благоприятствует развитию атеросклероза со всеми его потенциальными последствиями.

Как уже говорилось, точные доказательства связи анергических клонов Т-клеток с этими отдаленными эффектами пока отсутствуют. Однако пара интересных исследований в рамках осуществляемого сейчас Европейским союзом проекта Т-КИС (Т-клеточный иммунитет и старение) , уже приблизил нас к более четкой оценке летальной роли этой причины возрастного иммунодефицита - что бы в конечном итоге ни было написано в свидетельстве о смерти.

Эти исследования касались двух когорт "самых старых" жителей Швеции, т.е. тех, кому за 80 и за 90, причем охватывали только людей, практически здоровых по сравнению с большинством своих хронологических сверстников: с отсутствием в анамнезе серьезных заболеваний сердца, головного мозга, печени и почек, без рака, диабета, признаков активных инфекций или химических маркеров воспаления и не принимающих никаких лекарств, заметно действующих на иммунную систему, включая недавние вакцинации.

Европейские ученые обнаружили даже среди этих относительно здоровых стариков несколько человек с комплексом скрытых иммунологических дефектов ("фенотипом иммунного риска"), например различными формами возрастного поражения, которые можно объяснить цитомегаловирус-инфекцией, а значит, в не меньшей степени и клональной экспансией анергических ЦМВ-специфичных CD8-клеток.

Тот факт, что некоторые представители изученной здоровой, несмотря на большую хронологическую старость (по современным стандартам) выборки были свободны от клонов анергических Т-клеток, позволил проследить их "чистый" эффект в подгруппе, где присутствие таких лимфоцитов могло действительно способствовать развивающимся в следующие два года болезням, а не являться их результатом.

Никого не удивил результат наблюдений: фенотип иммунного риска, как и предполагалось, повышал вероятность скорой кончины, однако масштабы такого влияния шокировали. Оно было особенно выражено в группе людей старше 90, где этот дефицит позволял объяснить 57% смертности. Напоминаем: речь идет о возрастном ослаблении иммунной системы, вызываемом вирусом, активность которого многими из нас вообще не замечается, а в прочих случаях обычно ощущается лишь как легкое недомогание с повышением температуры.

Важно правильно понять все значение этого открытия. Фенотип иммунного риска способствовал всем причинам смертности, а не только повышал риск умереть от инфекционной болезни. Хотя внешние патогены, действительно, убивают многих биологически старых людей, микробные атаки объясняют полученные результаты далеко не полностью.

Война против клонов

По мере накопления данных, говорящих о роли клонов ЦМВ-специфичных CD8-клеток в возрастном ослаблении иммунитета, стала приоткрываться и светлая сторона этого феномена. Если иммунологическое старение в такой значительной степени объясняется экспансией Т-лимфоцитов, значит, ее предупреждение, а тем более обращение вспять должно (соответственно) защищать или восстанавливать молодое состояние иммунной системы независимо от нашего хронологического возраста. А значит, вакцины будут действовать на стариков так же эффективно, как и на юношей. И пожилые люди сбросят неподъемный груз инфекций, от которых молодежь избавляется, всего лишь пару ней не походив в школу или на работу.

Один из вариантов профилактики, поддерживаемый многими иммунологами, - вакцинация против цитомегаловируса. Еще до того, как выяснилась центральная роль ЦМВ-инфекции в возрастном ослаблении иммунной системы, опубликованный в 1999 доклад Медицинского института Национальной академии наук США, отмечая неудовлетворительные темпы разработки новых вакцин, поставил на первое место в списке неотложных задач создание эффективной анти-ЦМВ-вакцины. Подчеркнем, что авторы доклада исходили только из накопленной к тому времени информации о человеческих и финансовых потерях, вызываемых этим вирусом.

Позднее Национальное агентство США по программе вакцинации, придя к такому же выводу, запросило у правительства дополнительные средства на исследования в области вакцины против цитомегаловируса. Сейчас, когда получены четкие доказательства важной роли ЦМВ-инфекции в старении иммунной системы, многие специалисты высказываются за дальнейшее увеличение этих ассигнований.

Хотя польза такого подхода и выглядит бесспорной, стоит напомнить, что речь идет главным образом о профилактической стратегии. Она снизит риск заражения ЦМВ и, возможно, усилит иммунный ответ на него уже инфицированных людей, но не избавит их от вируса полностью и, естественно, не устранит накопленного за долгие годы его присутствия иммунологического ущерба.

Следовательно, такая вакцина спасет относительно небольшой процент младенцев от тяжелых врожденных дефектов и предотвратит безвременную кончину многих больных СПИДом и пациентов с пересаженными органами, однако почти не улучшит состояния сотен миллионов людей, уже страдающих от хронических инфекций и повышенной чувствительностью к патогенам из-за ослабления иммунной системы клональной экспансией анергических СD8-клеток.

Другие предложения, хотя бы потенциально устраняющие некоторые аспекты иммунологического старения, связаны с попыткой лечения дефектов уже существующих анергических Т-клеток методами генной терапии. Идея в том, что снабжение этих лимфоцитов генами, кодирующими их утраченные или недостаточно активные белки (например, СD28-рецептор или теломеразу), позволило бы восстановить эффективность выполнения ими своих специфических задач и предупредить угнетение прочих Т-клеточных популяций. Хотя подобный подход и выглядит логичным, польза его представляется слишком ограниченной, а путь клинической разработки - чересчур туманным.

Что же касается конкретно теломеразы, последствия ее активизации в любой клетке вызывают еще много вопросов и требуют более серьезного рассмотрения. Эти сомнения связаны с еще одной возрастной патологией - раком. Поскольку необходима хотя бы крошечная теломера для продолжения делений, каждое из которых ее укорачивает, клеткам с потенциально канцерогенными мутациями для превращения в злокачественную опухоль требуется механизм восстановления теломеры.

Почти все раковые клетки запускают его, срывая собственные тормоза с теломеразных генов. Стоит ли снабжать этими генами дефектные клетки, тем более учитывая риск случайного "заражения" геннотерапевтическими векторами "посторонних" клеток, в которых ни в коем случае нельзя включать теломеразу?

Более правомерным решением выглядит не реабилитация бездействующих лимфоцитов, а их уничтожение. Пожилым носителям цитомегаловируса, по-видимому, не хватает функциональных Т-киллеров, нацеленных на зараженные этим вирусом клетки. Причина такого дефицита - перенасыщение организма огромными субпопуляциями анергических лимфоцитов. Даже если нам удастся вернуть всем им полную иммунологическую компетентность, они будут создавать проблему, все еще ограничивая ресурсы, необходимые для сохранения наивных лимфоцитов и клеток памяти, необходимых для защиты от других патогенов.

Теоретически все выглядит просто. Избавившись от анергических Т-клонов, мы освободим иммунологические пространство для здоровых клеток других типов и специализаций, а том числе и для активных нацеленных на ЦМВ лимфоцитов.

Остается решить вопрос: как очистить организм от расплодившихся бездельников, оставив в живых всех (или хотя бы почти всех) их заложников, которых мы хотим избавить от угнетателей-тунеядцев. Онкологи уже располагают достаточно эффективными и не слишком вредными для организма в целом лекарственными и радиационными методами уничтожения сравнительно крупных опухолей в конкретных участках тела, однако этот подход неприменим в случае анергических Т-клеток, не сконцентрированных в отдельных местах, а распределенных по различным тканям и органам.

По той же причине бесполезно говорить о хирургическом вмешательстве. Опухоль можно вырезать (или как минимум урезать), добившись с определенным риском того или иного клинического улучшения. Однако в ближайшем будущем никаких способов индивидуального хирургического удаления анергических Т-клеток не предвидится.

Тем не менее, несмотря не неприменимость традиционных противораковых методов в качестве образца для разработки необходимой нам биотехнологии, последние впечатляющие успехи онкологов наводят на мысль о принципиальной возможности терапии, обеспечивающей избирательное избавление организма от не желающих умирать клеток.

Аромат Гливека

Даже если никто из ваших знакомых не болен раком, вы вполне могли слышать о гливеке (STI-571, или иматинибе), ирессе (ZD1839, или гефитинибе), герцептине (трастузумабе) и других менее известных или еще прокладывающих путь к больным лекарствах той же группы. Речь идет о так называемой "прицельной противораковой терапии", которую с полным основанием считают революционным новшеством. Даже формулировки типа "чудесных исцелений", абсурдно часто используемые в популярной медицинской литературе, не кажутся преувеличением тем, кто лично наблюдал исчезновение злокачественных опухолей в собственном теле или в организме своих близких, не сталкиваясь при этом с тяжелейшими побочными эффектами облучения и химиотерапии.

Конечно, эти лекарства тоже дают побочные эффекты - от них не свободно ни одно "нарушающее метаболизм" средство. Например, герцептин нацелен на ростовой рецептор HER-2: связывая его, он препятствует неконтролируемому размножению раковых клеток, которое стимулируется избытком копий этого рецептора на их поверхности. Однако нормальные клетки размножаются "как надо" тоже благодаря HER-2-стимуляции, только сравнительно слабой.

А в результате применение герцептина может вызывать смертельно опасную застойную сердечную недостаточность - побочный эффект, который недавние исследования обнаружили также у некоторых пациентов, пользующихся гливеком, который считался в высшей степени безвредным медикаментом - именно потому, что нацелен только на аномальную форму одного из трансдукторов ростовых сигналов.

Аналогичным образом, влияя на устойчивость анергических Т-лимфоцитов к апоптозу, можно было бы стимулировать их "самоубийство", однако остается вопрос: как не погубить попутно нормальные клетки?

Эти средства не дают эффекта, пока на них не действует определенное низкоэнергетическое лазерное облучение, которое со своей стороны никак не сказывается на людях, не получавших таких медикаментов: лучи без всякого вреда проходят сквозь их тело. Однако, когда они проникают в клетки, накопившие фотодинамическое лекарство, его свойства приводят к их резкому разогреванию или насыщению свободными радикалами. В результате эти раковые клетки гибнут, а все остальные (не считая находящихся в непосредственной близости) никак не страдают.

Первое ФДТ-средство, Фотофрин, было допущено в развитых странах для лечения далеко зашедшего рака легких, пищеварительного тракта и мочевыводящих путей еще в начале 1990-х. Сейчас используются или находятся в завершающей стадии разработки более совершенные варианты такой терапии.

Самое перспективное из ее средств, Рс-4, избирательно накапливается в определенных типах раковых клеток, поскольку хорошо растворяется в жирах, которыми особенно богаты эти клетки. Проникнув в них, Рс-4 благодаря особенностям своей структуры встраиваются в митохондрии. Последующее лазерное облучение запускает свободнорадикальную бомбежку, которая либо индуцирует апоптоз, либо - в худшем случае - убивает раковые клетки "грязным способом", сшивая их белки, окисляя липидные мембраны, разрушая ДНК мутациями.

Теломеры на концах хромосом

Американским ученым удалось обратить преждевременное старение клеток, взятых у пациентов с прогерией, путем удлинения теломер с помощью РНК-терапии. Результаты работы опубликованы в Journal of the American College of Cardiology .

Теломеры представляют собой «насадки» на концах хромосом, которые обеспечивают репликацию (удвоение) ДНК при делении клеток. С каждым делением они укорачиваются, что ограничивает возможности клеток к размножению (максимально возможное число делений называется пределом Хейфлика). Укорочение теломер с возрастом служит одним из факторов старения организма. В клетках присутствует фермент теломераза, способный увеличивать длину теломер, однако он активен только в клетках, которым необходимо постоянно делиться (стволовых, половых, некоторых эпителиальных и большинстве злокачественных).

Прогерия Хатчинсона-Гилфорда - редкое генетическое заболевание, обусловленное мутацией гена LMNA , который кодирует белок ламин А, входящий в оболочку клеточного ядра. Дефектная форма этого белка, названная прогерином, нарушает архитектуру ядра, репарацию ДНК, многие другие биохимические процессы, а также резко ускоряет укорочение теломер. Все это приводит к быстрому старению организма - средняя продолжительность жизни при прогерии не превышает 13 лет.

Сотрудники Хьюстонского методистского исследовательского института с помощью монохромной мультиплексной количественной ПЦР измерили длину теломер в фибробластах 17 пациентов с прогерией возрастом от 1 до 14 лет, а также аналогичных клетках здоровых новорожденных и взрослых. У 12 пациентов эта длина соответствовала 69-летним здоровым людям, у остальных пяти она оказалась нормальной.

После этого ученые ввели в часть фибробластов пациентов с прогерией матричную РНК (мРНК), кодирующую человеческую теломеразу (hTERT), а в остальные - мРНК, кодирующую каталитически инертную форму этого фермента (CI hTERT), которая связывается с теломерами, но не удлиняет их. Процедуру повторили трижды с интервалом в 48 часов, что привело к стабильной экспрессии мРНК в течение нескольких дней.

РНК-терапия обычной hTERT восстановила пролиферацию фибробластов с укороченными теломерами, уменьшила потерю клеток в культуре и продлила срок жизни клеток. Это сопровождалось признаками омоложения фибробластов, в том числе увеличением активности теломеразы и длины теломер, снижением секреции воспалительных цитокинов и другими (авторы намерены подробно описать их в последующих публикациях). В целом кинетика роста клеток приблизилась к нормальной, но иммортализации (приобретения способности к неограниченному размножению и злокачественному перерождению) клеточной культуры не наблюдалось.

Введение CI hTERT в дефектные фибробласты и hTERT - в фибробласты с нормальной длиной теломер подобных эффектов не производили, то есть за них отвечало именно восстановление длины укороченных теломер.

«Полученные результаты свидетельствуют, что временная экспрессия мРНК теломеразы может служить быстрым и эффективным методом обращения старения клеток при прогерии. Хотя длительная экспрессия теломеразы может вызвать опасения, связанные с иммортализацией, наш подход не привел к перерождению клеток», - пишут авторы работы. В дальнейшем они намерены усовершенствовать методику так, чтобы адаптировать ее к клиническому применению.

Ранее ученым замедлить старение клеток мышей с аналогом прогерии временным «включением» факторов транскрипции, преобразующих зрелые клетки в стволовые. Также был орган-на-чипе для изучения реакции клеток пациентов с прогерией на механическую деформацию.

Учёные веками пытаются понять, от чего зависит продолжительность жизни человека, и как можно её увеличить. Генетики , медики изучают способы , а недавно учёные даже выявили необычное влияние Солнца на . Тем не менее, единственным неоспоримым фактом в биогеронтологии является зависимость процессов старения организма от состояния теломер — концевых участков хромосом. Чем последние крупнее, тем дольше и лучше будет жить человек.

Прежде учёные уже демонстрировали, что здоровый образ жизни и, следовательно, продлить жизнь пациента. Однако теперь команда из Стэнфордского университета показала, как можно использовать медицинское вмешательство извне для непосредственного увеличения концевых участков хромосом.

Исследователи провели эксперимент, в ходе которого культивировали человеческие клетки и увеличили их теломеры. В результате основная группа клеток дольше вела себя как молодая, размножаясь внутри чашки Петри, тогда как контрольная группа, на которой не испытывали новую методику, быстро начала стареть и увядать.

Новая технология включает в себя использование модифицированной РНК и позволяет культивировать большее количество клеток для проведения экспериментов по испытанию лекарственных препаратов. Клетки кожи с удлинёнными теломерами учёные смогли поделить (на две новые клетки) в 40 раз больше, чем обычные клетки, не подвергавшиеся терапии. В случае с мышечными клетками культура увеличилась втрое по сравнению с контрольной группой.

В рамках предыдущих исследований учёные установили, что теломеры у молодых людей имеют длину, эквивалентную 8-10 тысячам нуклеотидов. По мере взросления и старения эти "колпачки" сокращаются и в какой-то момент достигают критической длины — именно тогда клетка прекращает делиться и отмирает.

"Мы нашли новый способ, который позволяет удлинить человеческие теломеры на целую тысячу нуклеотидов, а значит, фактически, повернуть время вспять. Наша разработка важна не только для исследований в области биогеронтологии, но и для биологов по всему миру, которые работают с клеточными культурами, поскольку данная методика позволяет значительно увеличить продолжительность жизни культивируемых клеток", — говорит ведущий автор исследования Хелен Блау (Helen Blau), профессор микробиологии и иммунологии в Стэнфорде.

Модифицированная РНК, которая является основным инструментом новой технологии, переносит инструкции из генов ДНК в "белковые фабрики" клеток. РНК, использованная в стэнфордском эксперименте, содержала последовательность, кодирующую каталитическую субъединицу TERT , активный компонент природного фермента теломеразы (не путать с теломерами!).

Теломераза создаётся в стволовых клетках, в том числе и тех, что отвечают за развитие сперматозоидов и яйцеклеток. Этот процесс даёт биологические гарантии того, что следующее поколение будет обеспечено здоровыми клетками с максимально длинными теломерами. Большинство других типов клеток, однако, экспрессируют гораздо меньшее количество чудодейственного фермента теломеразы.

Разработанная стэнфордскими учёными технология имеет важное преимущество перед другими потенциальными методами — методика имеет временный эффект. На первый взгляд, кажется, что это не плюс, а минус. Но дело в том, что неконтролируемое деление клеток в теле человека связано с огромным риском быстрого развития рака. Блау и её коллеги отмечают в пресс-релизе , что постепенное и поэтапное удлинение теломер гораздо безопаснее любых других аналогов.

Мышцы пациента с дистрофией Дюшенна, которую потенциально можно излечить при помощи новой методики

Модифицированная РНК в данном случае предназначена для снижения иммунного ответа клетки на лечение и позволяет TERT-кодирующему сигналу длиться дольше, чем обычно. Однако сама РНК исчезает уже через 48 часов, по истечении которых удлинённые теломеры вновь начинают постепенно сокращаться с каждым новым этапом деления клетки.

"У нашей методики есть ещё одно важное преимущество. Проведённый нами эксперимент стал первым случаем в истории биомедицины, когда введение модифицированной РНК не привело к иммунному ответу против теломеразы. Таким образом, в отличие от других технологий наша является неиммуногенной. Без дополнительных рисков мы научились оборачивать вспять процессы старения, которые протекают на протяжении более чем десяти лет в здоровом организме", — рассказывает Блау, чья вышла в издании FASEB Journal.

Учёные также сообщают, что новая методика может лечь в основу не только технологий продления жизни здоровых людей, но и терапий, предназначенных для лечения многих генетических заболеваний.

К примеру, Блау заметила, что длина теломер у пациентов с мышечной дистрофией Дюшенна заметно меньше, чем у представителей контрольной группы. Таким образом, учёные с помощью своей методики смогут с длинными теломерами, которые помогут излечить тяжёлый недуг.

– последовательности ДНК, повторяющиеся и локализуюються на концах хромосом. При каждом делении клетки теломеры укорачиваются, что в конечном итоге приводит к потере способности клетки к делению, физиологического старения и гибели. Накопление подобных клеток в организме повышает риск патологий. Еще в 1962 году Леонард Хейфлик (Leonard Hayflick) разработал революционную теорию в биологии, известную как теория разделения Хейфлика. Согласно этой теории, максимальная продолжительность жизни человека может составлять 120 лет. По теоретическим подсчетам именно к этому возрасту в организме накапливаются клетки не способны делиться и поддерживать жизнедеятельность. Через 50 лет генетика открыла человеку перспективы оптимизации собственного генетического потенциала и путь к продолжению молодости.

Различные стрессовые факторы способствуют преждевременному укорочению теломер, что ускоряет биологическое старение клеток. Уже доказано взаимосвязь между сокращением теломеров и заболеваниями сердца, ожирением, сахарным диабетом, дегенерацией хрящовоих ткани, ограничением овариального резерва. Укорочение теломер снижает эффективность функционирования генов, что приводит к триаде проблем – воспаления, окислительного стресса и снижения активности иммунных клеток.

После 3-летнего наблюдения за 110 000 добровольцами специалисты предоставили следующие данные – в группе пациентов, у которых теломеры были на 10% короче, уровень смертности был на 23% выше.

При исследовании 787 добровольцев в течение 10 лет оказалось, что у тех, кто имел критически короткие теломеры, в 3 раза больше рискуют заболеть онкопатологии и в 11 раз больше умереть по сравнению с теми, у кого длина теломер была максимальной.


Еще одним важным аспектом является качество теломеров. Например, пациенты с заболеванием Альцгеймера не всегда короткие теломеры. В то же время их теломеры всегда демонстрируют выраженные признаки функциональных нарушений, коррекции которых способствует витамин Е. В определенном смысле теломеры являются “Ахилесовою пятой” ДНК. Они легко поражаются и нуждаются в восстановлении, однако не обладают мощными репарационному механизмами, как в других участках ДНК. Это приводит к накоплению частично пораженных и плохо функционирующих теломеров, низкое качество которых не зависит от их длины.

Торможения процесса старения возможно при применении стратегий, притормаживают процесс укорочение теломер, одновременно защищая их и устраняя повреждения, которые возникают. В последнее время специалисты одержають все больше данных о правильно подобранный рацион питания и употребление витаминов в качестве профилактики старения.

Еще одной привлекательной перспективой является возможность продления теломер с одновременной поддержкой их качества, в прямом смысле позволит обратить биологические часы. Активация фермента теломеразы позволит восстановить утраченные фрагменты теломеров, что важно для нас как репродуктологов при помощи женщинам с возрастным истощением овариального резерва.

Базовое питания для теломеров

Активность генов проявляет определенную гибкость, поэтому питание является механизмом компенсации генетических недостатков. Многие генетических систем закладывается в первые недели внутриутробного развития и формируются в раннем детстве. После этого они подвергаются воздействию различных факторов. в том числе пищевых. Это влияние можно назвать “эпигенетическими настройками”, которые определяют, как гены реализуют заложенные в них функции.

Длина теломеров также регулируется эпигенетически. Если мама плохо питается, то передает потомству неполноценные теломеры, что в будущем повышает риск развития заболеваний сердца (при атеросклерозе наблюдаются короткие теломеры).

Еще одно интересное исследование провели американские ученые, исследуя репродуктивную функцию филиппинских мужчин старшего возраста. Оказалось, что дети старших отцов живут дольше. Это связано с тем, что мужчины передают потомкам длиннее теломеры. Причем, корреляция “старший папа – более длинные теломеры” кумулятивная, то есть способна накапливаться в поколениях. В половых клетках (сперматозоидах и яйцеклетках) высокая теломеразна активность наблюдается в течение всей жизни.

Для полноценного функционирования теломеров необходимо их метилирования. Метилирования – химический процесс, основанный на присоединении к нуклеиновой основы ДНК метильной группы (-СН3). Основным донором метильных групп в клетках человека является кофермент S-аденозилметионин, для синтеза которого организм использует метионин, метилсульфонилметан, холин и бетаин. Для нормального протекания процесса синтеза этого кофермента необходима присутствие витамина В12 и фолиевой кислоты, которые обеспечивают стабильность теломеров.

Наиболее важными пищевыми добавками для поддержания теломеров является качественные витаминные комплексы, применяемые на фоне рациона, обогащенного серосодержащими белками. В рацион должны входить молочные продукты, яйца, мясо, курица, бобовые, орехи и зерновые культуры. Яйца являются богатым источником холина.

Для поддержания хорошего настроения мозга также требуется большое количество метильных групп. Хронический стресс и депрессия отрицательно влияют на состояние теломеров, поэтому не зря говорят, что стресс старит человека.

Результаты исследований, в котором принимали участие 586 женщин, говорят, что теломеры женщин, регулярно принимали поливитамины, были на 5% длиннее, чем у тех, кто витамины не принимал. У мужчин высокий уровень фолиевой кислоты отвечали длиннее теломерам. Еще одно исследование с участием людей обоего пола также выявило положительный связь между содержанием фолиевой кислоты в организме и длиной теломеров.

Доказано, что недостаток антиоксидантов ведет к увеличению количества повреждений и повышения риска деградации теломер.

Например, теломеры пациентов с паркинсонизмом является короче, чем теломеры здоровых людей того же возраста. При этом степень деградации теломеров напрямую зависит от степени свободно-радикальных повреждений, ассоциированных с патологией.

Также доказано, что женщины, которые употребляют с пищей мало антиоксидантов, имеют короткие теломеры и входят в группу повышенного риска развития рака молочной железы.

Какие витамины и микроэлементы влияют на качество и длину теломеров

Для функционирования многих ферментов, участвующих в копировании и восстановлении повреждений ДНК, необходим магний. Эксперименты на клетках человека показали, что отсутствие магния приводит к стремительной деградации теломер и подавляет деление клеток. Организм человека должен получать 400-800 мг магния в зависимости от нагрузок и уровня стресса.

Цинк играет важную роль в функционировании и восстановлении ДНК. Недостаток цинка приводит к появлению большого количества разрывов цепочек ДНК. У пожилых людей нехватка цинка ассоциируется с короткими теломерами. Минимальное количество цинка в день 15 мг, а оптимальная дозировка составляет от 50 мг в день для женщин и 75 мг для мужчин. Цинк уменьшает укорочение теломер в фибробластах кожи, притормаживая ее старения. Состояние кожи является маркером статуса теломеров, что отражает биологический возраст людини.В детстве клетки кожи делятся очень быстро, а с возрастом скорость деления притормаживается. Лучше биологический возраст оценивать по состоянию кожи кистей рук.

Аскорбиновая кислота снижает скорость укорочения теломер в клетках сосудистого эндотелия и стимулирует активность теломеразы.

Витамин Е способен восстанавливать длину теломер в фибробластах.

Стрессы и инфекции провоцируют укорочение теломер, так как провоцируют воспалительный компонент и выработки свободных радикалов. В данном случае рационально применение витамина Д и омега (3-6-9) ненасыщенных жирных кислот. Витамин Д модулирует количество тепла, генерируемого иммунной системой в ответ на воспаление. При дефиците витамина Д существует угроза перегрева организма, синтез большого количества свободных радикалов и поражения теломеров. Способность переносить стресс и инфекционные заболевания во многом зависит от уровня витамина Д в организме. В исследовании с участием 2100 близнецов женского пола в возрасте 19-79 лет ученые продемонстрировали, что высокие уровни витамина Д ассоциируются с более длинными теломерами. Разница между уровнями витамина Д и соответственно найдовшими- короткими теломерами отвечала 5 годам жизни. Это исследование перекликается с новым исследованием специалистов Львовского государственного университета им. Галицкого по корреляции дефицита витамина Д и возраста женщин. Было обследовано 239 пациенток, из которых 40,2% составляли женщины в перименопаузе. В 74,8% из них был обнаружен дефицит витамина Д.
Еще одно исследование показывает, что употребление взрослым человеком с избыточной массой тела 2000 МЕ витамина Д в сутки стимулирует активность теломеразы и способствует восстановлению длины теломеров, несмотря на метаболический стресс.

Также недостаток витамина Д связывают с повышенным риском злокачественных новообразований.

Существует много пищевых добавок, подавляет активность воспалительного сигнального механизма, опосредованного ядерным фактором каппа-би (NF-kappaB). Экспериментально доказано положительное влияние на состояние хромосом из-за запуска этого противовоспалительного механизма таких природных соединений, как кверцетин, катехины зеленого чая, куркумина и резвератрола. Подобные соединения содержатся также во фруктах, овощах, орехах.

Куркумин, который придает яркого желтого цвета приправе карри, уже хорошо изучен. Он может стимулировать восстановление повреждений ДНК, а также в некоторых случай предупреждать развитие рака.

Резвератрол из косточек винограда направления активирует ген sirtuin 1 (sirt 1) и повышает синтез белка сиртуинов-1. Функция этого белка состоит в “настройке” систем организма на работу в “режиме экономии”, что важно для выживания в условиях недостатка питательных веществ. Таким образом резвератрол положительно влияет на состояние теломеров, особенно при отсутствии переедания.
На сегодняшний день очевидно, что короткие теломеры являются отражением низкого уровня способности систем клеток к восстановлению повреждений ДНК, в том числе теломеров, что коррелирует с повышенным риском рака и сердечно-сосудистых патологий.

В рамках одного из исследований с участием 662 добровольцев от детского возраста до 38 лет регулярно оценивали содержание в крови липопротеинов высокой плотности (ЛПВП), известных как “хороший холестерин”. Наиболее высокие уровни ЛПВП отвечали более длинные теломеры. Исследователи считают, что причина заключается в менее выраженном накоплении свободно-радикальных и воспалительных повреждающих факторов.

Интересно, что одним из способов удлинения теломер является медитация. По данным ученых калифорнийского университета люди, которые ежедневно медитируют, имеют высшее теломеразну активность, восстанавливает теломеры. После 3-месячного курса медитации уровень теломеразы был на 30% выше.

Резюме

Тема теломеров репродуктологов наталкивает на поиск средств при истощении овариального резерва в первую очередь в возрастных женщин. Сбалансированный образ жизни, избегание стрессов, употребление качественных продуктов питания и препаратов с антиоксидатной активностью, а также активаторов теломеразы в комплексе дают возможность иметь генетически родного ребенка тем женщинам, которые не соглашаются на программу донации ооцитов. Не забываем, что основным постулатом медицины является “Не навреди!”, Беременность любой ценой не нужна ни медикам, ни пациентам. Основной целью является рождение здорового ребенка при сохранении здоровья матери.