Причины болевых ощущений человека. Боль. Причины болей, как формируется болевое ощущение? Какие структуры и вещества формируют ощущение боли. История исследования боли

Мы чувствуем боль каждый день. Она контролирует наше поведение, формирует наши привычки и помогает нам выжить. Благодаря боли мы вовремя накладываем гипс, берем больничный, отдергиваем руку от горячего утюга, боимся стоматологов, убегаем от осы, сочувствуем персонажам фильма «Пила» и сторонимся банды хулиганов.

Рыбы — первые организмы на Земле, которые почувствовали боль. Живые существа эволюционировали, становились все сложнее, и их образ жизни тоже. И чтобы предостерегать их об опасности, появился простой механизм для выживания — боль.

Почему мы чувствуем боль?

Наше тело состоит из огромного количества клеток. Для того чтобы они могли взаимодействовать, существуют специальные белки в клеточной мембране — ионные каналы. С помощью них клетка обменивается ионами с другой клеткой и контактирует с внешней средой. Растворы внутри клеток богаты калием, но бедны натрием. Определенные концентрации этих ионов поддерживаются калий-натриевым насосом, который выкачивает избыточные ионы натрия из клетки и заменяет их на калий.

Работа калий-натриевых насосов настолько важна, что половина съеденной еды и около трети вдыхаемого кислорода идет на обеспечение их энергией.

Ионные каналы — это настоящие врата чувств, благодаря которым мы можем ощущать тепло и холод, аромат роз и вкус любимого блюда, а еще — испытывать боль.

Когда на мембрану клетки что-то воздействует, структура натриевого канала деформируется и он открывается. Вследствие изменения ионного состава возникают электрические импульсы, которые распространяются по нервным клеткам. Нейроны состоят из клеточного тела, дендритов и аксона — самого длинного отростка, по которому и движется импульс. На конце аксона находятся пузырьки с нейромедиатором — химическим веществом, участвующим в передаче этого импульса от нервной клетки к мышечной или к другой нервной клетке. Например, сигнал от нерва к мышце передает ацетилхолин, а между нейронами в мозге много других медиаторов, например глутамат и «гормон радости» серотонин.

Порезать палец во время приготовления салата — такое было почти с каждым. Но вы не продолжаете резать палец, а отдергиваете руку. Это происходит потому, что нервный импульс бежит по нейронам от чувствительных клеток, детекторов боли, до спинного мозга, где уже двигательный нерв передает команду мышцам: убери руку! Вот вы залепили палец пластырем, но по-прежнему чувствуете боль: ионные каналы и нейромедиаторы шлют сигналы в головной мозг. Болевой сигнал проходит через таламус, гипоталамус, ретикулярную формацию, участки среднего и продолговатого мозга.

И наконец, боль достигает пункта назначения — чувствительных участков мозговой коры, где мы осознаем ее в полной мере.

Жизнь без боли

Жизнь без боли — мечта многих людей: ни страданий, ни страха. Это вполне реально, и среди нас живут люди, которые не чувствуют боли. Например, в 1981 году в США родился Стивен Пит, и, когда у него прорезались зубы, он стал жевать свой язык. К счастью, его родители вовремя это заметили и отвели мальчика в больницу. Там им сказали, что у Стивена врожденная нечувствительность к боли. Вскоре родился брат Стива Кристофер, и у него обнаружили то же самое.

Мама всегда говорила мальчикам: инфекция — тихий убийца. Не зная боли, они не могли увидеть у себя симптомы заболеваний. Частые медицинские обследования были необходимы. Не представляя, что такое боль, парни могли драться до полусмерти или, получив открытый перелом, ковылять с торчащей костью, даже не заметив этого.

Один раз, работая с электропилой, Стив распорол себе руку от кисти до локтя, но зашил ее самостоятельно, поленившись идти к врачу.

«Мы часто пропускали школу, потому что оказывались на больничной койке с очередной травмой. Мы провели там не одно рождественское утро и день рождения», — говорит Стивен. Жизнь без боли — это не жизнь без страданий. У Стива тяжелый артрит и больное колено — это грозит ему ампутацией. Его младший брат Крис покончил с собой, узнав, что может оказаться в инвалидном кресле.

Оказывается, у братьев дефект гена SCN9A, который кодирует белок Nav1.7 — натриевый канал, участвующий в восприятии боли. Такие люди отличают холодное от горячего и чувствуют прикосновения, но вот болевой сигнал не проходит. Эта сенсационная новость была опубликована в журнале Nature в 2006 году. Ученые установили это в процессе исследования шестерых пакистанских детей. Среди них был фокусник, который развлекал толпу, прохаживаясь по раскаленным углям.

В 2013 году в Nature было опубликовано другое исследование, объектом которого стала маленькая девочка, незнакомая с чувством боли. Немецкие ученые Йенского университета обнаружили у нее мутацию гена SCN11A, который кодирует белок Nav1.9 — еще один натриевый канал, ответственный за боль. Гиперэкспрессия этого гена предотвращает накопление зарядов ионов, и электрический импульс не проходит по нейронам — боли мы не чувствуем.

Выходит, что свою «суперспособность» наши герои получили из-за сбоя работы натриевых каналов, которые участвуют в передаче болевого сигнала.

Что позволяет нам чувствовать боль меньше?

Когда нам больно, организм вырабатывает особые «внутренние наркотики» — эндорфины, которые связываются с опиоидными рецепторами в мозге, притупляя боль. Морфин, выделенный в 1806 году и завоевавший славу эффективного болеутоляющего вещества, действует подобно эндорфинам — присоединяется к опиоидным рецепторам и подавляет выделение нейромедиаторов и активность нейронов. При подкожном введении действие морфина начинается через 15-20 минут и может длиться до шести часов. Только не следует увлекаться таким «лечением», это может плохо кончиться, как в рассказе Булгакова «Морфий». После нескольких недель применения морфина организм перестает вырабатывать эндорфины в достаточном количестве, появляется зависимость. И когда действие наркотика заканчивается, множество тактильных сигналов, которые поступают в мозг, уже не защищенный антиболевой системой, причиняют страдания — возникает ломка.

Спиртные напитки тоже воздействует на эндорфиновую систему и повышают порог болевой чувствительности. Алкоголь в небольших дозах, как и эндорфины, вызывает эйфорию и позволяет нам быть менее восприимчивым к удару кулаком по лицу после свадебного застолья. Дело в том, что алкоголь стимулирует синтез эндорфинов и подавляет систему обратного захвата этих нейромедиаторов.

Горячие блюда с пылу с жару совсем не похожи на кусочки льда, что вы добавляете в коктейли, однако они одинаково сильно способны причинять вам боль. И горячая, и очень холодная пища, попадая в рот, заставляет вас переживать неприятные моменты. Еще больший ущерб ваша кожа может получить при контакте с кипятком, палящим солнцем или морозом. Все мы знаем о последствиях ожогов и обморожения. Но далеко не все знают, что наш мозг реагирует на термические экстремумы практически одинаково.

Подкожный мышечный слой (особенно это характерно для кончиков пальцев) упакован нервными окончаниями. Они ответственны за чувство осязания, за то, что биологи называют соматосенсорикой. Но на самом деле эти нервные окончания охватывают более широкий спектр чувств. Прикосновения нужны нам для ознакомления с предметами. Кожа с ее многочисленными нервными окончаниями дает нам возможность мгновенно реагировать на внешние раздражители и опасность. Вспомните, как рефлекторно одергивается ваша рука, когда вы случайно трогаете что-то горячее.

Что такое проприоцепция и ноцицепция?

Нервные окончания необходимы также для обеспечения функции проприоцепции - способности мышц воспринимать положение тела и отдельных его частей в пространстве. А вот за физиологическую боль в нервных волокнах ответственна ноцицепция. Этот процесс регулируется пульсирующими стимулами, которые образуются рецепторами боли (ноцицепторами).

Ноцицепция мотивирует людей избегать болезненных стимулов

Любые болезненные стимулы: механические, химические или термические - представляют реальную опасность для нашего благополучия. Мы не сможем засунуть руку в пылающее пламя. Ощущение жжения побуждает нас скорее одергивать ладонь от огненного очага. Боль доставляет много неприятных моментов, но она является доказательством того, что тело человека беспрестанно трудится, чтобы удерживать своего хозяина в безопасности. Если бы кто-то из нас утратил способность ощущать боль, он бы немедленно столкнулся с реальной угрозой для жизни. Только представьте, что вы бы не смогли чувствовать болезненность пореза. Через какое-то время вы бы потеряли огромное количество крови. Что было бы с вашими конечностями, если бы вы спокойно прикасались к опасным предметам, например, к раскаленному утюгу?

Как работает защитный механизм тела?

Нейробиолог Йорг Грандль из Университета Дьюка рассказывает об основных принципах работы сенсорных нейронов: «Эти чувствительные нервные клетки сосредоточены по всему телу и имеют набор каналов, которые активируются непосредственно при контакте с предметами и веществами слишком высокой или слишком низкой температуры». В течение последних пятнадцати лет исследователь с коллегами занимался изучением сенсорных каналов у генетически модифицированных мышей. Ученые смогли доказать, что белки, встроенные в стенки нейронов, вовлечены в ощущение кожей экстремальных температур.

Как тело реагирует на солнечный ожог?

Солнечный ожог сенсибилизирует теплоотводный канал, понижая порог болевой чувствительности. Рецептор TRPV1 реагирует на повышенную температуру (сильное нагревание). Обычно он не активируется до тех пор, пока температура кожи не превышает 42 градусов Цельсия. И у людей, и у мышей эта температура считается критичной, той, которая способна передавать болезненные ощущения телу. Как только этот порог будет достигнут, канал активируется, приводя в действие и весь нерв. А это значит, мозг немедленно получает предупреждающий сигнал.

Реакция на обморожение

Для критически низких температур применимы аналогичные механизмы. Единственная разница - это тип белка (в данном случае это рецептор TRPM8). Этот канал реагирует на экстремальный холод, затем активирует нерв, который также посылает в мозг сигнал об опасности. Существует еще один небольшой нюанс: экстремально нзкие температуры вызывают менее болезненные ощущения в сравнении с экстремально высокими. Еще один тип белка, который в состоянии распознавать холод, именуется TRPA. Исследователи считают этот рецептор наиболее таинственным. Хотя он активируется в ответ на холодные раздражители, пока неясно, участвует ли он в процессе обнаружения потенциальной угрозы.

Белки, которые работают с широким диапазоном температур

Все эти три типа белков (TRPV1, TRPM8 и TRPA1) позволяют нашей коже распознавать широкий диапазон температур. Именно они ответственны за то, что наши тела реагируют на внешние раздражители соответствующим образом. Указанные вещества относятся к классу ноцицепторов, поэтому они стоят на страже ваших действий. Их работа заключается в том, чтобы помогать вам избегать контакта с определенными температурами, а не искать его. Это стало ясно в ходе экспериментов, проведенных под руководством доктора Грандля. Так, мыши с дефектными модификациями рецептора TRPM8 прекращали избегать холодных температур. Эти наблюдения подтверждают, что обычные грызуны (равно как и люди) предпочитают приятную теплую атмосферу, избегая чрезвычайного холода или жары.

Рецепторы могут модулироваться

Исследователям удалось определить термические границы, при которых указанная группа рецепторов становится активной. Но это отнюдь не означает, что сами белки не могут модулироваться. Так, например, даже теплый душ может доставлять вам нестерпимую боль в том случае, если ваша кожа получила солнечный ожог. По мнению автора экспериментов, это происходит потому, что воспаление кожи сенсибилизирует канал TRPV1. Вследствие этого понижается порог, при котором нервы передают ощущение боли в мозг.

Температура - это не единственный активатор рецепторов

На самом деле критические температуры не являются единственными активаторами рецепторов этого типа. Некоторые растения вырабатывают специальные химические вещества, которые также являются раздражителями белков TRPM. Это происходит тогда, когда вы поедаете острую пищу. Вам кажется, что горло и желудок вот-вот взорвутся от жара. Все дело в том, что рецептор TRPV1 активируется не только при сильном нагревании, но и с помощью алкалоида капсаицина, который в большом количестве содержится в остром перце или горчичных культурах. Сходным принципом наше тело реагирует на охлаждающую способность ментола, только в этом случае в дело вступает рецептор TRPM8.

Удивительно, но капсаицин не активирует ноцицепторы у рыб, кроликов или птиц. А вот люди и мыши остро реагируют на это вещество. Скорее всего, в процессе эволюции некоторые растения развили защиту от определенных групп млекопитающих. Не исключено, что способность активировать болевые рецепторы тепла и холода некоторые растения развили в себе совершенно случайно.

При возникновении повреждения, например при травме стопы, возникает раздражение болевых рецепторов – нервных окончаний, которые расположены в коже, подкожной клетчатке, сухожилиях, мышцах, связках и др. Это раздражение по нерву, а затем по путям болевой чувствительности, расположенных в спинном мозге, достигает высших отделов нервной системы в головном мозге, где и формируется ощущение боли.

При незначительной травме и отсутствии психотравмирующих факторов обычно боль проходит сама или на фоне адекватного обезболивания, через определенное время, которое необходимо, например, для заживления раны.

Однако при определенных условиях, например при выраженной стрессовой ситуации, в которой получена травма, а также в отсутствии адекватного обезболивания в остром периоде травмы, ощущение боли может надолго остаться в организме. Такая «патологическая» боль теряет связь с источником ее вызвавшим. Она прочно укрепляется в нервной системе и плохо поддается всем известным способам борьбы с нею, а на определенной стадии переходит в злокачественную (неизлечимую) боль.

Патологическая боль практически постоянна. На фоне этой постоянной боли возникают приступы разрядов сильной нестерпимой боли, на высоте которой некоторые пациенты прибегают к суицидальным попыткам. Такие приступы часто провоцируются определенными внешними и/или внутренними факторами, или возникают без какой-либо заметной причины. Патологическая, особенно нейрогенная боль (боль, возникшая в результате повреждения нервов, сплетений, спинного мозга) обычно сопровождается повышенной чувствительностью к прикосновению кожных покровов в области ее максимальной выраженности. Легкое прикосновение к этой области может вызвать сильнейший разряд боли. Такие импульсы «подпитывают» и поддерживают хроническую патологическую боль. Однако, как мы уже отметили, патологическая боль существует независимо от внешних воздействий. Это происходит из-за многих факторов, большинство из которых до сих пор точно неизвестны. Известно, что нарушается баланс между системой, которая воспринимает, проводит и формирует болевое ощущение и системой, которая противостоит ей. Эта наша внутренняя противоболевая система. Благодаря ей мы не умираем от болевого шока при легком порезе руки. Но при повреждении нервных образований (нервов, спинного или головного мозга), которые участвуют в проведении болевой чувствительности, наша противоболевая система часто не справляется с возложенной на нее функцией. В организме происходят определенные физиологические и биохимические сдвиги, которые поддерживают состояние постоянной хронической боли, а происходящие изменения в самой нервной системе, благодаря «феномену пластичности» закрепляют это состояние и приводят к развитию злокачественного болевого синдрома.

Правообладатель иллюстрации Getty Images Image caption Все мы знаем, что боль является объективной реальностью, но при этом ее восприятие глубоко субъективно. Боль может быть и симптомом, и болезнью, и душевной и физической. Насколько мы близки к пониманию, что же это такое?

Острая, тупая, внезапная, хроническая, ноющая, пульсирующая, ослепляющая... Это - далеко не полный перечень эпитетов, которые мы, не задумываясь, применяем, говоря об ощущении, которое испытывали и продолжаем испытывать мы все: о боли.

  • Почему боль так сложно измерить и облегчить?
  • Медицина будущего: как биостекло совершит революцию в хирургии
  • Почему порезы от бумаги так болезненны

Она не обращает внимания на цвет кожи, разрез глаз, или социальный статус. Ей все равно, на каком уровне эволюции находится то или другое существо. Боль испытывают люди, собаки, кошки, дельфины, киты, птицы, лягушки и даже, как считают ученые, дождевые черви.

При этом, если ученые говорят, что механизм боли им более-менее понятен, то о том, что же она такое: сигнальная система неполадок, обязательная часть бытия, без которой невозможно понимание физического и душевного благосостояния, чисто физиологический процесс или же результат сложных химических процессов в головном мозге, ни медики, ни даже священнослужители к единому согласию не пришли.

Правообладатель иллюстрации Getty Images Image caption Нам известно, как работает сигнальная система через нейроны в головной мозг и обратно, но многие вопросы по-прежнему остаются без ответа

К тому же есть группа людей, которые в силу генетической аномалии боли не испытывают вообще.

На самом деле им не надо завидовать, потому что они с легкостью могут пропустить начало какого-нибудь заболевания, и умереть, хотя и безболезненно, но совершенно напрасно.

Все наши знания о боли построены на парадоксах.

1. Наш мозг фиксирует сигналы боли, но сам ее не чувствует

Правообладатель иллюстрации Getty Images Image caption Мозг фиксирует и обрабатывает болевые сигналы изо всех других частей организма, а сам боли не ощущает

Допустим, вы подвернули щиколотку, или обожгли палец. Нервные волокна немедленно посылают сигнал в ваш мозг, который расшифровывает испытываемое ощущение, как боль.

Недаром современная хирургия стала возможной только после открытия анестезии.

Однако, если в качестве объекта операции оказывается сам мозг, то ему обезболивающее ни к чему.

Нервные клетки головного мозга посылают сами себе такие же сигналы, как и при сломанной конечности, вот только центр обработки данных для них отсутствует.

Мозг, привыкший отвечать за весь организм, совершенно не понимает, когда больно должно быть ему самому.

В этом есть нечто жутковатое, но пациенты часто находятся в полном сознании во время операций на мозге, что позволяет хирургам понять, не слишком ли глубоко они залезли в главный процессор нашего тела.

2. Мы все чувствуем боль по-разному

Правообладатель иллюстрации DanielVilleneuve Image caption Боль субъективна: для кого-то агония, а для кого-то небольшое неудобство.

Тот факт, что, после, допустим, естественных родов одна женщина говорит, что было немного дискомфортно, но ничего страшного, а другая уже в самом начале схваток требует обезболивания, вовсе не означает, что одна из них стоик, а другая - слабая размазня.

На то, как мы ощущаем боль, влияет множество факторов: какие химические реакции совершаются в это время в вашем мозге, идет ли где-то в вашем теле воспалительный процесс, а также насколько вы "помните" болевые ощущения, которые вы испытали раньше.

Как сказал однажды глава нью-йоркского центра спинальной хирургии Кеннет Хансрадж: "Кому-то можно сверлить берцовую кость без наркоза, а он вам спокойно скажет, мол, приятель, вытащи-ка ты эту штуку! А другой не вынесет даже прикосновения к коже тоненькой иголки".

3. От боли можно отвлечься

Правообладатель иллюстрации Portra Image caption Боль можно обмануть: если начать трясти ушибленным пальцем, то становится легче

Наш мозг, конечно, является, самым сложным компьютером, когда-либо созданным природой, но при этом он немного туповат.

Дело в том, что ему сложно одновременно анализировать несколько ощущений.

Допустим, вас укусил комар и место укуса отчаянно чешется. Приложите к нему кубик льда, и неожиданно вы поймете, что холод вы-таки ощущаете, а вот зуд пропал.

Вот почему мы инстинктивно потираем ушибленное место или отчаянно трясем пальцем, который случайно прищемили дверью.

4. Рыжим приходится хуже

Правообладатель иллюстрации Getty Images Image caption Рыжим приходится нелегко: огненный цвет волос сопровождается и нестандартным отношением к обезболивающим

В это трудно поверить, но в 2009 году в журнале Американской зубоврачебной ассоциации появилась статья, согласно которой рыжие очень не любят посещать дантистов.

Дело в том, что та же генетическая комбинация, которая награждает их огненным цветом волос, делает их и менее восприимчивыми к некоторым обезболивающим.

И иногда им требуется доза, которая в два раза превысит то, чего хватило бы какому-нибудь брюнету.

Возможно также, что их организм реагирует на анестезию не совсем тривиальным способом. Некоторые врачи, кстати, делают поправки на цвет волос пациента.

5. Секс спасает от боли

Правообладатель иллюстрации Getty Images Image caption Занятия сексом могут уменьшить боль от мигрени... если у вас, конечно, хватит сил им заняться

Ну, объективно говоря, если у вас случился приступ мигрени, то секс в такой ситуации представляется делом несколько сомнительным.

Тем не менее, есть некоторые статистические данные, согласно которым 60% страдальцев от мигрени чувствовали себя гораздо лучше, если во время приступа занимались этим самым.

Сексуальное возбуждение вырабатывает в головном мозгу эндорфины, которые являются естественным обезболивающим.

Кстати, с больными мигренью все не так просто. Есть подозрение, что та же самая генная вариация, которая награждает страдальцев мигренью, одновременно существенно увеличивает и их либидо.

6. Разделились беспощадно мы на женщин и мужчин

Правообладатель иллюстрации Getty Images Image caption Все мы все чувствуем одинаково, только мужчины считают, что надо терпеть

Вообще-то нет никаких научных доказательств того, что мужчины и женщины по-разному чувствуют боль.

Хотя врачи отмечают, что в целом женщины чаще готовы признать, что им больно.

Возможно, это связано с социальным стереотипом, который требует от "настоящих" мужчин терпеть, стиснув зубы.

7. Те, кто не чувствует боли

Правообладатель иллюстрации Getty Images Image caption Тем, кто не чувствует боли, не так уж и хорошо: простое прикосновение к горячей плите может обернуться ожогом третьей степени

Это - очень редкая генетическая аномалия. Настолько редкая, что за всю историю медицины она встречалась всего несколько десятков раз.

Те, кому крупно не повезло с нею родиться, могут, например, почувствовать, является ли какой-нибудь предмет горячим или холодным, но боли не ощущают.

А это, кстати, совсем плохо. Например, случайное прикосновение к горячей плите может завершиться ожогом третьей степени, вместо небольшого волдыря, который бы возник, если бы они быстро сообразили, что к чему и отдернули руку.

По имеющейся статистике (которая, по вполне очевидным причинам, крайне невелика), средняя продолжительность жизни таких нечувствительных существенно ниже среднего показателя.

8. Самая распространенная боль

Правообладатель иллюстрации Getty Images Image caption Самая распространенная боль в развитых странах - боль в нижней части спины

Это - боль в спине. Примерно 27% людей в развитых странах утверждают, что страдают от боли в нижней части спины.

Тогда как от постоянных головных болей, либо мигреней - всего 15%. Эксперты советуют не брезговать физическими упражнениями и не набирать излишнего веса.

Однако это - следствие наших эволюционных успехов. Двуногость вовсе не способствует здоровью позвоночника. Четвероногим, у которых вес распределяется гораздо более равномерно, боль в спине не грозит.

9. Что болело у королей и динозавров

Правообладатель иллюстрации Getty Images Image caption И короли, и динозавры страдали от подагры. Здесь, правда, дракон, но, наверное он тираннозавру близкий родственник

Подагру, она же артрит, раньше называли болезнью королей, поскольку, она, якобы была следствием излишнего потребления жирной пищи и спиртного.

Понятно, что в далеком Средневековье это могли себе позволить только очень состоятельные люди. Теперь мы знаем, что боль при подагре возникает от образования внутри суставов острых кристаллов мочевой кислоты.

Исследование скелета верхней конечности самки тираннозавра (которую палеонтологи назвали Сью) показало, что этот конкретный хищник Юрского периода тоже страдал от подагры, причем в очень запущенной форме. Вероятно, что все последние годы своей жизни Сью страдала от хронической боли.

10. Природа боли вовсе не однозначна

Правообладатель иллюстрации Getty Images Image caption Иногда боль из симптома превращается в болезнь. Болит везде, а почему - непонятно

Боль является симптомом, который, однако, дает лишь общее представление о том, что что-то не в порядке, но не дает никакой конкретики.

А у больных, страдающих от центрального болевого синдрома, сама боль становится болезнью, а не ее симптомом.

Такие пациенты жалуются на боль во всем теле, причем ощущения варьируются от "иголок" до "сильного давления". В этом случае мозг является не просто регистратором и процессором болевых ощущений, но и их главным генератором.

11. Не надо недооценивать свой мозг

Правообладатель иллюстрации Getty Images Image caption Не надо недооценивать свой мозг: он прекрасно знает на какие кнопки и в каких обстоятельствах следует нажимать

Мозг устроен так, что постоянно оценивает поступающие в него сигналы, решая, насколько серьезной является опасность и следует ли предпринимать немедленные меры.

Получив тревожный сигнал, мозг немедленно пытается ответить на главный вопрос: "А насколько это все действительно опасно?"

В оценке ситуации наш центральный процессор пользуется всей имеющейся у него в наличии информацией: от субъективной, исходящей из нашего прошлого опыта, до объективной, получаемой от всего комплекса физических и химических параметров организма.

А получив сигнал, он отправляет "указания" нервным окончаниям о том, как им себя вести. Канадский врач Пол Ингрэм описал происходящий процесс в следующем воображаемом диалоге:

Правообладатель иллюстрации Getty Images Image caption Мозг командует нейронами как хочет, и тем приходится подчиняться

Нервы: Проблема! Проблема! Огромная! Большая! Красный сигнал тревоги! Включить немедленно!

Мозг: Ммммм, да? Ну ладно, принял к сведению. Но вот что, ребята, у меня тут есть база данных, пардон, она строго секретная, так что уж поверьте мне на слово: не так все это страшно. Расслабьтесь.

Нервы : Нет, нет, послушай, это все очень серьезно!

Мозг: Не-а, не верю.

Нервы: Послушай, может у нас, конечно, и нет доступа к этой "информации", о которой ты постоянно талдычишь, но что такое повреждение тканей нам прекрасно известно! И мы тут не в игрушки играем. Мы не заткнемся, пока ты не примешь меры!

Нервы: А, да... О чем это мы? Черт, вроде бы только что хотели о чем-то важном доложить... Ну, ладно, мы потом вернемся.

12. Самый главный начальник

Правообладатель иллюстрации Getty Images Image caption Мозг сам решает, как регулировать кнопку боли в нашем организме, и почему иногда он останавливается на шести, а иногда - на десяти, мы до сих пор до конца не знаем

Мозг действительно может вертеть периферийными нервными окончаниями, как ему заблагорассудится.

Если ему что-то не понравится, он может затребовать больше информации. А может и приказать своим подчиненным не суетиться.

В последние годы появилось немало информации, согласно которой нервы на периферии могут реально меняться как физически, так и химически, возможно, следуя команде, поступающей из мозга.

Как отметил тот же Пол Ингрем: "Мозг не только может крутить кнопку, регулирующую звук, но запросто менять все оборудование, изменяя сам сигнал задолго до того, как он поступает в динамики".

Вывод

Окончательная природа боли, несмотря на то, что она является неотъемлемой частью существования всех живых существ, нам по-прежнему не известна.

Любой, кто жил в 90-е, вспомнит серию «Друзей», в которой Фиби и Рэйчел отправились делать татуировки. В результате это закончилась тем, что Рэйчел получила тату, а Фиби осталась с маленькой черной точкой, потому что не смогла вытерпеть боль. Этот эпизод, конечно, носит юмористический характер, однако хорошо иллюстрирует очень интересный вопрос, связанный с тем, как мы ощущаем боль и что на это влияет. Что же в «Рэйчел» такого особенного, что она смогла перенести то, на что у «Фиби» не хватило сил? И что важнее, можем ли мы помочь «Фиби», если нам будет известна причина ее повышенной чувствительности?

Почему мы чувствуем боль?

Боль - это основной симптом, о котором сообщает пациент при обращении за медицинской помощью. Обычно болевые ощущения являются одной из защитных реакций организма. Благодаря им мы понимаем, что травмированы. Кроме того, боль помогает нам щадить себя, позволяя организму восстанавливаться.

Все было бы хорошо и понятно, если бы люди не отличались способностью выявлять, переносить боль и реагировать на нее. Кроме того, мы еще и по-разному описываем свои ощущения и реагируем на лечение. Это затрудняет работу врачей, которым приходится искать к каждому пациенту свой подход. Итак, почему же мы не чувствуем боль одинаково?

Индивидуальные различия в эффективности лечения часто возникают в результате сложных взаимодействий психологических, экологических, социальных и генетических факторов.

Хотя боль не может фиксироваться как традиционное заболевание, такое как сердечная недостаточность или диабет, но на ее возникновение влияют те же причины. Болезненные ощущения, которые мы испытываем на протяжении всей жизни, зависят от генетического кода, который делает нас более или менее чувствительными. Также наше физическое и психическое состояние, опыт переживаний (болезненный и травматический) и окружающая среда могут формировать наши реакции.

Если мы сможем лучше понять, что делает людей более или менее чувствительными к боли в различных ситуациях, то сумеем снизить человеческие страдания. В конечном итоге это означало бы осознание того, кто из пациентов будет испытывать боль сильнее и нуждаться в большем количестве лекарств для ее снижения, что в результате приведет к эффективной борьбе с болевыми ощущениями. И в итоге позволит медицине выйти на новый уровень.

Генетические причины

Изучив геном человека, мы узнали многое о расположении и количестве генов, которые составляют наш код ДНК. В ходе исследования были идентифицированы миллиарды мелких вариаций внутри этих генов, часть которых имеет определенное влияние на нас, в то время как значение других пока остается неизвестным. Эти вариации могут иметь различные формы, но наиболее распространенным считается одиночный нуклеотидный полиморфизм - SNP. Выраженный SNP представляет собой одиночную разницу в отдельных составляющих ДНК.

В человеческом геноме насчитывается около 10 миллионов известных SNP. Индивидуальная их комбинация составляет персональный код ДНК и отличает его от других. Когда SNP является общим, он называется вариативным. Когда SNP редко встречается (менее чем у 1 % населения), то он называется мутацией. Современные исследования говорят о десятках генов и их вариантов, которые участвуют в определении нашей болевой чувствительности, а также показывают, насколько хорошо анальгетики уменьшают нашу боль и даже позволяют выявить риск развития хронической боли. Однако основным геном, отвечающим на нашу чувствительность к боли, является SCN9A. Именно его мутация и приводит к патологическим изменениям.

История исследования боли

Первыми, кто заставил врачей задумать о боли и ее связи с генетикой, стали люди, которые отличались очень редким состоянием - они не чувствовали боли. И очень часто они были связаны друг с другом кровным родством.

Исследования этого феномена начались еще в начале 20-го века. Именно тогда стали появляться первые доклады врачей о врожденной нечувствительности к боли.

Однако в то время еще не существовало технологий, позволяющих определить причину этого расстройства. Поэтому ученые могли просто описывать симптомы и выдвигать различные предположения, доказать которые было практически невозможно. Только с началом изучения генетики мы наконец-то узнали причину подобных патологий. Связана она с мутацией генов, которые отвечают за передачу в нейронах сигналов о боли. Часто такие изменения наследуются детьми от родителей.

Почему испытывать боль полезно?

Кажется, что людям с подобными мутациями сказочно повезло. Кто же из нас не хотел бы перестать чувствовать боль? Однако в природе ничего не бывает просто так. И от боли есть своя польза. Именно она сигнализирует о возникновении заболеваний и других травм.

Поэтому семьи с мутировавшим геном SCN9A вынуждены постоянно быть начеку и очень часто совершать профилактические осмотры. В обычной жизни ребенок падает и плачет, что становится сигналом для родителей осмотреть его и посетить врача. Однако в случае с нечувствительностью к боли, ребенок никогда не заплачет, даже если сломал руку. Не говоря уже про аппендицит, возникновение которого может привести к смертельному исходу, ведь главным симптом для госпитализации является сильная боль.

Сверхчувствительность к боли

Исследования показали, что мутации SCN9A могут не только вызывать болевую нечувствительность, но также способны приводит к противоположному результату - повышать чувствительность человека к боли.

Подобные типы наследуемых болевых состояний крайне редки. Поэтому провести полноценное генетическое исследование практически невозможно - просто не хватает материала. Нельзя с уверенностью утверждать, что внутри самого гена SCN9A не существует еще более мелких генетических различий, чем выявлено на сегодняшний день.

Однако даже имеющейся небольшой информации хватает для того, чтобы начать разработку эффективных методов лечения для людей с подобными мутациями.

Только ли мутации влияют на нашу чувствительность?

Действительно, мутация гена SCN9A является основной причиной изменения болевых ощущений. Но ограничивается ли уровень нашей чувствительности только этим? Исследования доказали, что в 60 % случаев, люди, у которых нет мутации гена SCN9A, также наследуют восприятие боли у своих предков. На их чувствительность при этом влияют совершенно обычные гены, которые есть у всех нас. То есть болевая чувствительность может наследоваться как цвет волос, глаз и тон кожи. И она также связана с SCN9A, только в его обычном виде, а не мутировавшем.

Кроме того, существуют отдельные гены, отвечающие за послеоперационную, фантомную и другие боли.

Болеутоляющие препараты из глубин моря

При лечении мы используем местные анестетики, в том числе лидокаин. Эти препараты действуют по одному принципу - они на определенное время купируют нервные каналы, которые отвечают за передачу сигналов о возникновении боли в головной мозг. Эти препараты постоянно используются для безопасного и эффективного устранения боли на протяжении последнего столетия.

Однако последние исследования показали, что наибольший результат может принести мощный нейротоксин. Это яд, который вырабатывают морские обитатели, такие как рыба-шар и осьминоги. Нейротоксины в малых количествах эффективно блокируют передачу сигналов о боли. Они способны помогать даже при раковых заболеваниях и мигренях, при которых анестетики оказываются бессильны.

Можно ли одолеть боль?

Сегодня перед медициной стоит огромная задача - найти эффективное болеутоляющее, которое смогло бы помочь любому пациенту, вне зависимости от заболевания и индивидуальных генетических особенностей. И можно с уверенностью утверждать, что первые шаги уже сделаны. Знания о взаимосвязи чувствительности и генетики позволили начать разработку более действенных препаратов. Поэтому с уверенностью можно говорить о том, что медицине будущего удастся изобрести средство, способное помочь любому пациенту в кратчайшие сроки.