Сауна от рака. Гипертермия в лечении рака – контроль над температурой Несколько слов про опухолевые клетки

Терапевтическая гипертермия является типом лечения, при котором живые ткани подвергаются воздействию повышенной температуры. И это оказывает губительный эффект на раковые клетки, вызывающий их уничтожение, или снижает устойчивость этих клеток к воздействию радиоактивного лечения или препаратов химиотерапии. Стоит отметить, что температурное воздействие на атипичные ткани не относится к группе радиочастотной абляции, это совершенно иная методика. В сочетании с лучевой терапией метод теплового воздействия носит называние терморадиотерапия.

Гипертермия в онкологии: что это такое?

Международная онкология не выработала до сих пор общего мнения относительно того, какие показатели температуры являются самыми безопасными и одновременно самыми эффективными. Во время лечения температура тела, как правило, достигает уровня между 39,5 и 40,5 ° C. Тем не менее, другие исследователи определяют границы гипертермии между 41.8-42 ° C, что присуще для стран Европы и США. Япония и Россия принимают самые высокие показатели — 43-44 ° С.

Температура и время воздействия взаимосвязаны. Более длительная продолжительность и высокие температуры очень эффективны для уничтожения раковых клеток, но они также достаточно серьезно повышают риск токсичности. Опухолевые клетки с дезорганизованной и компактной сосудистой структурой очень тяжело отводят тепло, что способствует стимуляции апоптоза (вид физиологически запрограммированной гибели клеток) в их отношении или обычной гибели. Тогда как здоровые ткани обладают лучшей теплопроводностью, в связи с чем лучше противостоят высоким температурам.

Даже если раковые клетки не гибнут сразу, они могут стать более восприимчивы к ионизирующему излучению в противораковой терапии или химиотерапии. Тепло при локальной гипертермии расширяет кровеносные сосуды опухоли, способствуя повышению оксигенации (насыщению кислородом) новообразования, тем самым делая лучевую противораковую терапию более эффективной. Кислород является мощным радиосенсибилизатором, что значительно повышает эффективность заданной дозы излучения путем формирования ДНК-повреждений. Опухолевые клетки при недостатке кислорода могут быть в 2-3 раза более устойчивы к радиационному повреждению, чем в нормальной кислородной среде.

Гипертермия, как было доказано, весьма эффективна в сочетании с химиотерапией. Опубликованные исследования показали улучшение 10-летней выживаемости без рецидивов и метастазов у пациентов, страдавших раком мочевого пузыря, которые получали комбинированное лечение гипертермией и химиотерапией. 53 % пациентов прожили 10 последующих лет, в то время как химиотерапия в единственном варианте обеспечила выживаемость только у 15 % заболевших.

Интенсивный нагрев вызывает денатурацию и коагуляцию клеточных белков, что быстро уничтожает клетки опухоли. Более длительный умеренный нагрев до температуры всего в несколько градусов выше нормы может вызвать более тонкие структурные изменения в клетках. Мягкая термообработка в сочетании с другими способами может привести к гибели клеток по причине стимуляции биологического разрушения.

Из минусов специалисты отмечают многие биохимические последствия теплового шока в нормальных клетках, в том числе замедление роста и повышенной чувствительности к последующей ионизирующей радиоактивной терапии.

Гипертермия увеличивает приток крови к нагретой области, что может провоцировать удвоение кровотока в опухолях. Такой феномен повышает положительное воздействие химиотерапевтических средств в патологических областях.

Мягкая гипертермия, которая обеспечивает температуру, равную естественно высокой при многих инфекционных заболеваниях, может стимулировать естественные иммунологические атаки на опухоли. Однако это также индуцирует естественный физиологический ответ под названием термотолерантность, который имеет тенденцию защищать атипичные клетки.

Очень высокие температуры, выше 50 ° C, используются для абляции — прямого уничтожения некоторых опухолей. Методика использует вставки в виде металлической трубки непосредственно в опухоль, наконечник которой нагревается, это и вызывает гибель клеток по его периметру.

Стоит подчеркнуть, что методика гипертермической абляции в России пока что в стадии изучения, и в практической медицине применяется редко. Однако эффективность испытаний прогнозирует весьма неплохие перспективы этого метода, в том числе и в нашей стране.

Отличия и особенности методов локальной, регионарной и общей гипертермии

Методы терапевтической гипертермии применяются, как правило, в трех вариантах, в зависимости от показаний и лечебных возможностей.

  • Локальная гипертермия

Нагревается очень маленькая площадь, как правило, в рамках самой опухоли. В некоторых случаях цель метода заключается в гибели атипичных клеток путем нагревания, не повреждая окружающие ткани. Тепло может быть стимулировано с помощью:

  • ультракоротких волн;
  • высоких радиочастот;
  • ультразвуковой энергии;
  • с использованием магнитной гипертермии.

В зависимости от локализации опухоли, тепло может быть применено к поверхности тела, внутри тканей или глубжележащих областей за счет использования игл или зондов. Одним из относительно распространенных типов является радиочастотная абляция небольших опухолей. Терапевтической цели легче всего достичь, когда опухоль находится на поверхности тела (поверхностная гипертермия) , или если существует возможность ввода игл или зондов непосредственно в опухоль (интерстициальная гипертермия).

Нагревается большая площадь тела, например, целый орган или конечность . Как правило, цель метода состоит в ослаблении раковых клеток таким образом, чтобы достичь их гибели последующим радиоактивным излучением или действием химиотерапевтических препаратов. Как и в предыдущем методе, регионарная гипертермия может использовать те же поверхностные или интерстициальные методы или опираться на перфузию крови. Во время процесса перфузии кровь пациента удаляется из организма, нагревается и возвращается в кровеносные сосуды, которые ведут непосредственно в нужную часть тела. Как правило, химиотерапевтические препараты применяются одновременно.

Одним из специализированных типов такого подхода является непрерывная перитонеальная перфузия, которая используется для лечения сложных новообразований внутри брюшной полости, в том числе первичной мезотелиомы брюшной полости и рака желудка. Горячие химиотерапевтические препараты закачивают непосредственно в брюшную полость, чтобы убить раковые клетки.

Нагревается весь организм до температуры от 39 до 43 °С и выше. Метод, как правило, используется для лечения метастатического рака. Включает в себя использование инфракрасных гипертермических куполов, под которые помещается все тело пациента, за исключением головы. К другим способам можно отнести помещение пациента в очень горячую камеру или укутывание в нагретые влажные одеяла. Из редких методов используют специальные гидрокостюмы с постоянным подогревом или погружение в горячий воск.

Для каких видов рака может применяться гипертермия?

В одиночку гипертермия продемонстрировала уникальную способность терапии злокачественных новообразований. Также известно, что методика значительно увеличивает эффективность других методов лечения.

В сочетании с радиоактивным излучением гипертермия особенно эффективна в присутствии большого количества кислорода при условии одновременного воздействия не менее, чем в течение часа.

В последние десять лет гипертермия в сочетании с облучением была использована с лечебной целью у больных со следующими диагнозами:

  • ранняя стадия рака молочной железы;
  • при локализации рака на голове и шее;

Известные научные издания свидетельствуют об улучшении у 38 % пациентов при раке мочевого пузыря в сочетании с химиотерапией, по сравнению с применением только химиотерапии. У больных раком молочной железы результат показал улучшенную реакцию у 18 % пациентов.

Какие существуют еще типы рака, которые показывают значительное улучшение при лечении гипертермией?

  • Меланома и рак кожи.
  • Саркома мягких тканей.
  • Рак мочевого пузыря.
  • Рак прямой кишки.
  • Злокачественные опухоли подмышечной области и грудной стенки.
  • Метастазы в лимфоузлах.

Исследования в России показали интересные результаты с высокой гипертермией в 43,5-44°C, когда метод применяли в отношении:

  • рака пищевода;
  • рака гортани;
  • рака печени;
  • при ВИЧ-инфекции и расстройствах иммунной системы.

Абляция опухолей — одна из разновидностей гипертермии

Радиочастотная абляция (РЧА), вероятно, наиболее часто используемая разновидность локальной гипертермии. Для повышения температуры применяются радиоволны высокой частоты.

  • Тонкий игольчатый зонд вводится в опухоль на короткое время, как правило, от 10 до 30 минут .
  • Размещение зонда регулируется с помощью ультразвука, МРТ или КТ.
  • Наконечник зонда выдает высокочастотный ток, который способен создать тепло между 40 и 60°С , что вызывает гибель клеток в пределах определенной области.
  • Мертвые клетки не удаляются, становятся рубцовой тканью и рассасываются с течением времени.

РЧА наиболее часто используется для лечения опухолей, которые не могут быть удалены хирургическим способом, или у пациентов, которые по разным причинам не операбельны. Процедура может быть выполнена амбулаторно. Повторения абляции возможно для опухолей, способных к рецидивам. Также РЧА может быть добавлена к другим лечебным мероприятиям, в том числе оперативному удалению новообразования, лучевой терапии, химиотерапии, инфузионной терапии, алкогольной абляции или химиоэмболизации.

РЧА может быть использована для лечения опухолей, достигших в диаметре вплоть до 5 см. Методика наиболее эффективна для лечения образований в печени, почках и легких. В настоящее время изучается ее применение в других областях тела. Долгосрочная эффективность после лечения гипертермической абляцией пока не известна, но первые результаты обнадеживают.

Опухолевые клетки гибнут при высоких температурах

Ученые одной из лабораторий Нидерландов показали, что высокие температуры (41–42 градусов по Цельсию) блокируют один из сигнальных путей раковых клеток, в котором участвует белок BRCA2, необходимый для «починки» повреждений в двухцепочечной молекуле ДНК.

Рис. Высокие температуры блокируют белок, который позволяет клеткам рака справляться с поломками внутри их ДНК (источник: Science Photo).

Нагреть и убить

Исследователи предполагают, что их открытие поможет повысить эффективность лечения рака при использовании таких методов, как радиотерапия, химиотерапия, а также ряда лекарственных средств. Например, в последнее время при лечении рака груди и яичников, вызванном дефектами в генах BRCA, активно используется препарат PARP-1– ингибитор другого белка «починки» PARP.

Смотрите также: Белок PARP - белок, задействованный в механизмах репарации (починки) ДНК а также в механизмах программированной клеточной смерти (апоптоз).

Методы химиотерапии и радиотерапии широко используются в противоопухолевой практике. Препараты, используемые в ходе такого лечения, призваны убивать раковые клетки, внося в их геном многочисленные мутации. Однако далеко не все опухолевые клетки поддаются такому лечению: многие из них продолжают размножаться, даже несмотря на многочисленные мутации, вызванные медикаментами. Основанная причина заключается в том, что у клеток рака очень хорошо работает система репарации (починки) генома.

Последняя работа ученых говорит о том, что на такие системы репарации можно воздействовать высокими температурами. В частности, было показано, что основной «мастер по ремонту ДНК» белок BRCA2 не выдерживал высоких температур, что приводило к сбою в системе «починки» главного носителя наследственной информации в раковой клетке.

«Мы нашли, что гипертермия ингибирует (блокирует) гомологичную рекомбинацию, с помощью которой BRCA2 „чинит“ ДНК, независимо от мутаций в гене BRCA2»,- говорит соавтор исследования доктор Роланд Канаэр (Roland Kanaar) из Медицинского центра Эрасмуса в Роттердаме.

На данный момент ингибиторы PARP используются при лечении только тех раковых заболеваний, которые вызваны мутациями в генах BRCA.

«Наше открытие говорит о том, что такие ингибиторы могут использоваться и при лечении других раковых заболеваний, где нет нарушения в работе генов BRCA, то есть при лечении большого числа опухолей»,- говорит Канаэр.

А выдержит ли сам человек?

Однако некоторые специалисты критикуют данное открытие и говорят, что методы гипертермии крайне сложно будет применять в ходе реальных клинических испытаний.

«Одно дело нагреть клетки животного, и совсем другое- человеческие клетки. Если применять подобную практику в ходе противоопухолевой терапии, то внешние температуры должны составлять порядка 54 градусов по Цельсию. Ни один пациент не вытерпит таких условий»,- говорит профессор Кум Кум Канна (Kum Kum Khanna) из Института медицинских исследований в Квинсленде.

Плюс ко всему, здесь существует и еще одна проблема. Известно, что при температурах выше 42-х градусов по Цельсию человеческие белки просто-напросто начинают разрушаться.

Можно ли получить эффект банной процедуры в городской квартире - в ванной комнате? Если да, как это сделать?
Русы издавна любят попариться. На это и надо ориентировать людей, думая о массовом оздоровлении нации. Банные процедуры разгоняют кровь не хуже бега. А когда кровь имеет сильный ток, она лечит больные ткани. Банный жар эффективен даже против рака - он угнетает раковые клетки.

Прежде чем понять, в чём сила банных процедур, надо усвоить: кровь, если её русло не теряет скорость, - мощное лечащее средство. Баня тем и ценна, что разгоняет кровь.
Геронтолог и натуропат Абрам Залманов, изучая роль банных процедур в усилении тока крови, создал метод капилляротерапии.
Абрам Залманов

Медик работал в основном с капиллярной частью кровеносной системы, поскольку через нее курсирует 80% всей крови. Где удавалось очистить капилляры и восстановить ток крови, кровь сама врачевала. Кровь «лечит» любые органы, если привести в порядок капилляры, и дать ей работать со скоростью 8-9 кругов в минуту.

Банный жар незаменим в создании сильного кровотока, который чистит сосуды, снимая с них холестериновые и прочие наслоения подобно сильной струе воды. Чтобы усилить ток крови, а снимать наслоения со стенок сосудов может только сильный ток крови, надо разогреть тело, что наилучшим образом делает банный жар. Покраснение кожи сигналит о том, что разогрев удался.

Ученые подсчитали, что в течение часа организм может выработать такой объем тепла, которого хватило бы, чтобы вскипятить литр ледяной воды. Это свойство организма и надо использовать, создавая через разогрев, или иначе, кровоток такой силы, чтобы он мог «промывать» больные ткани.

После банных процедур анализы крови фиксировали рост гемоглобина, количества красных и белых кровяных клеток. Это значит, что ликвидация микробов и вирусов будет усилена. Ведь лейкоциты являются пожирателями микробов.
Американский гематолог Хардин Джоунз установил, что к 25 годам у юношей вдвое уменьшается объем жидкости, циркулирующей в мышцах крови. Это значит, они не поддерживают сильное течение крови никак: ни банными процедурами, ни спортом, ни щелочным питанием, ничем иным из мер поддержания здоровья. В итоге кровь врачует в полсилы. Удивительно ли, что человек быстро стареет и умирает?! Остальная кровь застаивается, портится, как стоячая вода.
Если, к примеру, кровь вовремя не очистить от мертвых лейкоцитов (не вывести их с сильным руслом крови), можно ожидать серьезных сбоев в дыхании. Сначала эти сбои могут выражаться в храпе, а потом – в более серьезных симптомах.

Активацию кровяных клеток можно усилить и бегом, равно как и другими видами спорта. Но люди ленивы. А вот в баньку ходят с удовольствием. Потому и разговор о ней: как о лечащем средстве для большинства.

Однако к банным процедурам надо подходить осторожно, прежде приучив организм к высоким температурам. Помните, что природа не любит резких скачков. “Банный жар противопоказан единицам. Это, как правило, люди с крайне острым воспалением сердца, а также запущенной сердечной недостаточностью. Таким больным запрещены даже водные процедуры, купания».

После бани облегчается состояние и астматиков. Болезнь отступает, так как под действием высоких температур бронхи расширяются. Смягчается мускулатура органов дыхания. Лечащий эффект имеет банная процедура и для почек. Человек разогрет так сильно, что начинается усиленное потоотделение. Это значит, что вывод жидкостей идет в основном через поры, в связи с чем почки отдыхают. Удивительно ли, что после бани снижается уровень белка в моче!

Однако почечники должны прежде проконсультироваться у врача, прежде чем применять банные процедуры. Есть тонкости, которые может оценить только специалист. Под действием банных процедур падает также уровень сахара в крови. В клиническом санатории им. Генриха Гейне в Потсдаме банные процедуры активно применяют при лечении сахарного диабета. Перед благодатным жаром отступают радикулит, неврит, ишиас, ревматизм, подагра, геморрой и тому подобные болезни.

Отступает даже рак: если у больного еще есть время, чтобы вступить в схватку с этим смертельным недугом. Ученые доказали, что банный жар угнетает раковые клетки. Оказывается, высокая температура гибельна для опухолевых клеток.

Это отмечал еще профессор Герберт Краус, назначая раковым больным банные процедуры, которые разгоняли их кровь и повышали температуру тела. Профессор с удивлением обнаружил, что «при разогреве тела до 39 градусов замедляется рост раковых клеток. При повторном разогреве, уже до 40 градусов в течение часа, опухолевые клетки отмирали». Сильный ток крови, а его усиливает резервная кровь, берет их в свое русло, отправляя на вывод из организма и очищая раковые ткани.

Быстрый вывод отмирающих клеток – важное условие лечения. Если же мертвые клетки скапливаются в месте разрастания опухоли, они препятствуют рождению новых, то есть - лечению недуга. Тогда нарушается движение жидкостей: тормозится кровеобмен. В итоге болезнь заходит вглубь…

Банные процедуры восстанавливают движение жидкостей – в том числе и крови. Так родилась идея многоступенчатой терапии рака. Разогрев тела до 39 градусов в первую процедуру и до 40 градусов во вторую, медики сочетали с насыщением опухоли кислородом, глюкозой, витаминами и тому подобными веществами, которые резко усиливают обмен веществ. Начиналась сложная цепная реакция, в результате которой шло отмирание раковой ткани. Больные раком могут выжить, если у них есть силы на банные процедуры. Однако не забывайте, что организм должен адаптироваться к высоким температурам. Не начинайте резко, чтобы не навредить.

Имейте в виду, что и ледяная вода, вылитая разово, создает мощный ток крови, спасающий даже того, кто получил сильное отравление. Если он через час, прежде согревшись, опрокинет на себя еще пару ведер холодной воды, последствия отравления уйдут полностью, не говоря уже о теплолечении.

Наскипидаренный Залманов

Абрам Залманов назначал пациентам горячие ванны: используя метод теплолечения. Он добавлял в ванну разного рода эмульсии. Когда человек разогревался, лечащие эмульсии начинали всасываться в кожу, растворяюще действуя на отложения, скопившиеся в суставах, сосудах, внутренних органах. Очень эффективны, к примеру, скипидарные ванны. Скипидарные ванны с белой эмульсией применяют при инфаркте миокарда, деформирующих полиартритах, мышечных атрофиях, вялых параличах, простатите, импотенции, для ускорения срастания суставов.

Целительную силу имеет мёд, если им обмазать чистое распаренное тело на некоторое время. Через поры происходит очищение всего организма от шлаков и токсинов, которые являются причиной разрушения клеток.

Гипертермия - это значительное повышение температуры тело, которое иногда может привести к очень серьезным последствиям, в том числе - к смерти. Причинами гипертермии могут быть различные заболевания, перегрев (его самая тяжелая форма - тепловой удар), и прием некоторых медикаментов. Но гипертермией также называется вид терапии, при которой высокая температура используется в контролируемых условиях для лечения разных болезней. Гипертермию применяют для лечения рака.

Когда клетки организма подвергаются воздействию температуры, значительно превышающей норму, внутри клеток начинают происходить изменения. Эти изменения могут сделать клетки более восприимчивыми к радиотерапии и химиотерапии. Очень высокие температуры могут убивать раковые клетки, но они также повредят здоровые клетки и ткани. Поэтому гипертермию нужно использовать очень осторожно, и ее должны проводить специалисты, имеющие достаточный опыт в применении этого вида терапии.

Идея об использовании высокой температуры для лечения рака появилась некоторое время назад, но ранние эксперименты в этом направлении давали смешанные результаты. Например, было трудно поддерживать нужную температуру в определенной области, при этом ограничивая ее воздействия на другие части тела. Но сегодня новые инструменты обеспечивают лучший контроль над процедурой и позволяют использовать высокую температуру направленно и точно. Благодаря этому началось активное изучение возможностей применения гипертермии в лечении рака.

Как можно использовать гипертермию для лечения рака

Гипертермию можно применять двумя способами:

Локальная гипертермия

Локальная гипертермия используется для нагревания маленького участка ткани, например, опухоли. Очень высокие температуры уничтожают раковые клетки, вызывают свертывание белков и разрушают кровеносные сосуды. Область, на которую оказывалось такое воздействие, практически «спекается». Для нагревания целевого участка могут быть использованы радиоволны, ультразвуковые волны, микроволны и другие формы энергии. Локальная гипертермия, при которой применяется ультразвук, называется высокоинтенсивным сфокусированным ультразвуком (ВИСУЗ; чаще обозначается аббревиатурой англоязычного названия процедуры - HIFU).

Для повышения температуры целевых участков используются два разных метода. При использовании первого из них энергия направляется на опухоль извне, через поверхность кожи. Другой метод состоит в том, что прямо в опухоль вводят тонкую иглу, через кончик которой проводится энергия, нагревающая ткани.

Радиочастотная абляция

Радиочастотная абляция - это, вероятно, наиболее часто используемый вид локальной гипертермии. Для этого вида терапии используются радиоволны.

В опухоль вводят длинную тонкую иглу на короткий промежуток времени - как правило, на 10-30 минут. Чтобы точно ввести иглу в целевой участок, используются ультразвук, магнитно-резонансная томография или компьютерная томография. Через иглу в опухоль поступают радиоволны, которые нагревают ее до 500-100С, и убивают образующие ее клетки. Погибшие клетки не удаляют; они становятся рубцовой тканью и постепенно уменьшаются.

Радиочастотную абляцию чаще всего используют для лечения опухолей, которые нельзя удалить хирургическим путем, или в случаях, когда пациентам по каким-либо причинам противопоказаны хирургические операции. Процедуру можно повторять, если опухоль начинает расти снова, или ее не получилось удалить с первого раза. Радиочастотная абляция также может быть использована в качестве дополнения к другим видам лечения - хирургическим операциями, радиотерапии, химиотерапии, печеночной артериальной инфузии, алкогольной абляции или химиоэмболизации.

Этот вид терапии эффективен при лечении опухолей, размер которых не превышает 5 см. Чаще всего радиочастотная абляция применяется для течения рака печени , почек и легких; возможности ее использования в терапии опухолей, образовавшихся в других частях тела, сейчас интенсивно исследуются. Долговременные результаты радиочастотной абляции пока неизвестны, но уже имеющиеся данные являются обнадеживающими.

Регионарная гипертермия

При регионарной гипертермии нагревают определенную часть тела - орган, конечность, или полость. Как правило, это сочетается с химиотерапией или радиотерапией .

Один из видов этой разновидности лечебной гипертермии называется регионарной или изолированной перфузией. Для применения этого метода циркуляция крови в определенной части тела изолируется от остальной системы кровообращения. Кровь из целевого участка перекачивается в нагревательное устройство, а затем подается обратно - таким образом, температура отдельной части тела повышается. Одновременно может производиться вливание химиотерапевтического препарата.

Чтобы провести такую процедуру, необходима хирургическая операция для изменения кровотока в целевой части организма. Изолированную перфузию часто проводят под общей анестезией. Температура целевого участка может быть повышена до 40-45 С, в зависимости от того, какая часть организма нуждается в лечении. В настоящее время изучаются возможности применения регионарной перфузии для лечения раковых опухолей, развивающихся в руках и ногах - таких, как саркома и меланома.

Похожая техника в сочетании с хирургической операцией может быть использована для лечения раковых опухолей, формирующихся в брюшине (область, в которой расположены кишечник и органы пищеварения). В ходе операции нагретые химиотерапевтические препараты будут циркулировать в брюшной полости. Этот метод называется гипертермической перитонеальной перфузией, или гипертермической интраперитониальной химиотерапией. Исследования показали, что он эффективен при лечении определенных видов рака, но пока непонятно, является ли он более действенным, чем другие, более традиционные методы.

Дмитрий Юрьевич Блохин,
доктор медицинских наук , зав. лабораторией фармакоцитокинетики НИИ экспериментальной диагностики и терапии опухолей ГУ РОНЦ им. Н. Н. Блохина РАМН
«Химия и жизнь» №3, 2009

Эта статья - о причинах возникновения, закономерностях развития и путях лечения онкологических болезней, а также о тех трудностях, с которыми сталкиваются ученые-онкологи при разработке новых средств и методов лечения рака. Но вначале стоит вспомнить некоторые основные понятия.

Несколько слов про опухолевые клетки

Человеческий организм состоит примерно из 100 триллионов клеток. Изменение этого количества всегда физиологически оправданно. Например, при воспалении увеличивается число белых клеток крови (лейкоцитов), которые противостоят возбудителям инфекции. При интенсивных физических нагрузках возрастают количество мышечных клеток и мышечная масса. Процесс поддержания оптимальной численности клеток - клеточный гомеостаз - осуществляет сложная система контроля клеточных делений (пролиферации) и клеточной гибели.

Каждая клетка имеет свою продолжительность жизни: эритроциты - около 120 дней, лейкоциты - от нескольких часов (нейтрофилы) до нескольких недель (лимфоциты), а «клетки памяти», как называют специализированные иммунные лимфоциты, могут жить десятки лет. По истечении отпущенного ей срока клетка погибает. Гибель эта упорядоченна и генетически запрограммированна. Программа клеточной гибели включается, если клетка больше не нужна организму (например, принадлежит эмбриональной ткани), состарилась, заразилась вирусом, накопила много мутаций или получила иное не подлежащее восстановлению повреждение. При этом происходит последовательная саморазборка клетки на фрагменты, которые затем поглощают макрофаги или соседние клетки в качестве питательного и строительного субстрата. Как правило, в литературе для обозначения программированной клеточной гибели используют термин «апоптоз».

Программа клеточной гибели срабатывает только после многократного подтверждения «сигнала смерти». Сигнал может прийти из окружающей клетку среды или от собственных внутриклеточных «датчиков неблагополучия». Внешний сигнал клетка воспринимает специальными «рецепторами смерти», находящимися на ее поверхности. Существуют и различные внутренние сигналы, возникающие при неустранимых внутренних повреждениях клетки (в большинстве случаев - молекул ДНК), которые препятствуют ее нормальному делению или функционированию. Но независимо от источника и места получения этого сигнала в итоге запускается один и тот же каскад активации «суицидных» ферментов, которые и завершают выполнение программы: эффекторные каспазы, ДНК-фрагментирующий фактор и др.

В здоровом и нормально функционирующем организме ежесекундно погибает огромное количество клеток, столько же образуется вновь. Но иногда процесс клеточного гомеостаза выходит из-под контроля и возникает опухоль.

Опухолью называют патологическое разрастание ткани, состоящее из качественно измененных (атипичных) по морфологии, степени дифференцировки и характеру роста клеток. Не всякое увеличение объема ткани представляет собой опухоль. Отек, например, связан не с разрастанием клеток, а с накоплением межклеточной жидкости, гипертрофированные мышцы культуриста - адаптация организма к длительным физическим нагрузкам. Эти изменения преходящи: после снижения мышечных нагрузок дополнительная ткань подвергается инволюции (то есть рассасывается). Появление опухоли с адаптацией не связано, и инволюции она не подвержена. Опухоль, в отличие от нормальной ткани, не имеет выраженной структуры, ее строение в той или иной степени беспорядочно. Она образована клетками, которые не завершают дифференцировку и несут признаки юных, а часто и эмбриональных форм.

Если разрастание опухоли ограничивается местом ее возникновения, то она доброкачественная. К доброкачественным опухолям относятся миомы, липомы, эпителиомы, аденомы (окончание -ома обозначает «опухоль», а корень слова часто происходит от названия ткани, из которой возникли опухолевые клетки), папилломы, полипы, пигментные невусы - «висячие родинки», бородавки и многие другие. Доброкачественные опухоли, как правило, не представляют угрозы жизни больного, поскольку носят локальный характер. Исключение составляют опухоли мозга, которые в силу жестко ограниченного пространства черепной коробки могут механически сдавливать соседние участки мозга и кровеносных сосудов, вызывая парезы, параличи и даже гибель больного.

Если рост опухоли не ограничен собственной тканью и органом, а оторвавшиеся от основного узла атипичные клетки мигрируют в соседние и отдаленные органы, вызывая появление там вторичных опухолевых узлов (метастазов), то такая опухоль злокачественна.

Помимо способности образовывать метастазы, то есть существовать вне привычного клеточного окружения, для раковых клеток характерно неуправляемое деление, причем делиться они могут неограниченное количество раз, не обнаруживая при этом признаков старения, и в значительной мере утрачивают способность к программированной клеточной гибели. Именно совокупность всех этих признаков и отличает раковую клетку от нормальной.

Опухолевая трансформация клетки происходит, когда она накапливает некоторое количество мутаций, причем не любых, а критических для канцерогенеза. Пока ученые точно не знают, сколько мутаций и в каких именно генах должно произойти, чтобы клетка стала опухолевой. Очевидно, никак не меньше пяти, а по самым оптимистическим прогнозам 8–10. Важно, что речь идет не о каком-то определенном наборе мутаций: их комбинации, определяющие опухолевую трансформацию, могут быть самыми разными. С молекулярно-генетической точки зрения не существует двух совершенно одинаковых опухолей, как и совершенно одинаковых причин их возникновения. Уникальность каждой опухоли намного превышает уникальность дактилоскопических узоров.

«Универсальной» или «главной» мутации, необходимой и достаточной для превращения нормальной клетки в раковую, ученые не обнаружили. Однако об одном гене, изменения в котором часто приводят к злокачественной трансформации, стоит упомянуть. Называется этот ген ТР53, а его белковый продукт р53 (такое невыразительное обозначение произвели от «протеин с молекулярной массой 53 килодальтона») регулирует активность более 150 генов, контролирующих цикл клеточного деления.

Процесс клеточного деления очень сложен и таит в себе немало опасностей, связанных с возникновением и закреплением соматических мутаций, то есть мутаций, возникающих в соматических клетках. Чтобы избежать такой беды, в организме существует система генетического самоконтроля клеток. Известно по крайней мере четыре контрольные (или сверочные) точки, в которых происходит анализ правильной последовательности событий репликативного цикла. Если что-то прошло не так, то пролиферация временно останавливается, а если повреждение не удается исправить, включается программа клеточной гибели, которая не позволит мутантным клеткам размножаться. Ключевую роль в этом процессе играет белок р53, который часто именуют «стражем генома», а постоянно функционирующий ген ТР53 относят к опухолевым супрессорам (тормозящим развитие опухолей). Но насколько он важен для опухолевой супрессии, пока неясно. С одной стороны, возникновение инактивирующих мутаций в гене ТР53 или полное прекращение его экспрессии (нокаут гена) вызывают дестабилизацию генома: формируется так называемый мутаторный фенотип клетки, при котором частота появления и накопления мутаций резко возрастает. Если мутация гена ТР53 получена по наследству от родителей, она присутствует во всех клетках организма и сопровождается развитием синдрома Ли-Фраумени, при котором еще в детстве возникают множественные опухоли. Такие пациенты редко доживают до совершеннолетия. Однако, как показали масштабные генетические исследования, проведенные в лабораториях разных стран, лишь чуть более половины всех исследованных злокачественных опухолей человека различной локализации и стадии развития несут мутации в гене ТР53; клетки же второй половины исследованного массива синтезируют нормальный белок р53, что, впрочем, не мешает им быть злокачественными!

Ежедневно в человеческом организме возникают сотни тысяч мутантных клеток. Их постоянно отслеживают и уничтожают две системы контроля: система клеточного генетического самоконтроля, о которой шла речь выше, и система неспецифического противоопухолевого иммунитета.

Система противоопухолевого иммунитета распознает мутантные клетки по наличию на их поверхности постороннего, не свойственного данному организму антигена или по отсутствию одного из абсолютно необходимых. К первым относятся так называемые опухоле-ассоциированные и вирусные антигены, а ко вторым - антигены главного комплекса гистосовместимости I класса, несущие информацию: «Я - свой». Если эти антигены не представлены на клетке, ей немедленно делает «смертельную инъекцию» клетка-киллер, которая осуществляет иммунологический надзор. Она формирует в стенке клетки-мишени канал, через который впрыскивает ферменты-гранзимы. Гранзимы «включают» проферменты класса каспаз - это основные исполнители программы клеточной гибели.

Исполнительный механизм системы противоопухолевого иммунитета сопряжен с механизмом обеспечения генетического самоконтроля. Это означает, что клетка, которая в результате мутации станет невосприимчива к действию одной системы контроля, будет неуязвима и для другой. Потомки такой клетки унаследуют приобретенный признак и положат начало формированию мутантного клона - способность ускользать от системы генетического самоконтроля позволит и в дальнейшем избегать гибели при тиражировании вновь появившихся мутаций. Эти клетки еще нельзя назвать опухоле-трансформированными, поскольку они пока не приобрели всех необходимых для этого генетических дефектов, но начало положено: мутаторный фенотип открыл простор для дальнейшего накопления мутаций.

Поскольку процесс мутагенеза носит случайный характер, в каждой клетке мутантного клона возникнет индивидуальный набор мутаций, и происходит клональное расщепление популяции. Появление новых мутаций отразится на фенотипе потомков - они будут постепенно утрачивать родительские черты, но приобретать новые свойства, в том числе те, которые присущи опухолевым клеткам. Наиважнейшее из них - способность к неограниченному числу делений, или репродуктивное бессмертие. Без этой способности все прочие приобретенные «опухолевые» свойства не будут представлять опасности: совершив положенное число удвоений, клетки необратимо утратят способность к делению - рост опухоли остановится, за чем последует ее постепенное саморазрушение. Если же клетка достигнет репродуктивного бессмертия, приобретение прочих опухолевых черт - только вопрос времени.

Бывают случаи, когда возникшая доброкачественная опухоль в ходе своего роста по тем или иным причинам становится злокачественной - «малигнизируется». Так на месте доброкачественного пигментного невуса может образоваться меланома - одна из самых злокачественных опухолей кожи, как правило, образующая множественные метастазы. Малигнизация доброкачественной опухоли - процесс не обязательный, большинство таких новообразований существуют в организме годами, растут медленно и в основном доставляют лишь косметические неудобства. Однако злокачественная опухоль может развиться не только из доброкачественной, но и из совершенно здоровой ткани. В этих случаях появлению опухоли обычно предшествует «предрак» - компактное скопление измененных по морфологии мутантных клеток. Их потомки могут перерастать во внутритканевой, «местный» рак, который затем распространяется и образует инфильтрирующие злокачественные образования. Так происходит прогрессия опухолевого процесса, направление которой во всех случаях одинаково - от плохого к худшему.

Возникнув, опухолевая ткань не только безудержно растет вследствие бесконтрольного деления составляющих ее клеток, но и постоянно эволюционирует, порождая новые клеточные клоны, наиболее злокачественные из которых, то есть лучше приспособленные к автономному существованию, в процессе конкурентной борьбы вытесняют менее злокачественные. Остановить такую экспансию можно, лишь удалив опухоль из организма или, по крайней мере, ограничив ее рост.

Лечение онкологических заболеваний

Сегодня существует три основных метода лечения раковых больных: хирургическое удаление опухолевых узлов, химиотерапия и радиолучевая терапия, причем в подавляющем большинстве случаев их приходится комбинировать.

Хирургическое вмешательство эффективно лишь тогда, когда процесс локализован и иссечение опухоли в пределах здоровых тканей не разрушает функционирование жизненно важных органов. В иных случаях, а также если первичный опухолевый очаг вовсе отсутствует, например, при лейкозах, применяют химиотерапию, которая теоретически должна поражать опухолевые клетки вне зависимости от их локализации.

Идею «химиотерапии рака» впервые сформулировал Пауль Эрлих в начале XX века. Однако сложности проблемы избирательного поражения опухолевых клеток без вреда для клеток нормальных вынудили Эрлиха отказаться от практической реализации идеи. И только в конце 40-начале 50-х годов ушедшего столетия медики обнаружили химические соединения, которые не только останавливают деление и вызывают гибель опухолевых клеток в культуре, но и тормозят рост опухолей в организме. Первым официальным лекарством от рака стал эмбихин, впервые примененный на человеке в 1946 году. Созданный на основе иприта, боевого отравляющего вещества времен Первой мировой войны, эмбихин положил начало целому семейству противоопухолевых лекарств алкилирующего типа, применяющихся и поныне. За более чем полувековую историю своего существования химиотерапия выделилась в самостоятельную область клинической онкологии. Однако несмотря на значительные успехи в этой области, полного излечения с помощью одной химиотерапии удается добиться лишь при ограниченном круге опухолевых заболеваний, высокочувствительных к лекарственным препаратам: хорионэпителиоме матки, герминогенных опухолях яичка, лимфогранулематозе, лимфоме Беркита, остром лимфобластном лейкозе у детей. При химиотерапевтическом лечении больных саркомой Юинга, лимфосаркомами, аденокарциномами молочной железы и яичника, раком мочевого пузыря и некоторыми другими нозологическими формами химиотерапия позволяет получить значительный клинический эффект, но полностью излечиваются не более 10% больных. Еще скромнее выглядят результаты химиотерапии при лечении рака желудка, рака толстой кишки, немелкоклеточного рака легкого, а злокачественные опухоли пищевода, печени, поджелудочной и щитовидной желез, рак почки и рак шейки матки проявляют значительную устойчивость к лекарственному лечению. Тем не менее использование химиотерапевтических препаратов при комплексном лечении этих опухолей оправдано, поскольку позволяет после удаления опухоли подавить рецидивы заболевания и развитие метастазов, а в предоперационном периоде помогает уменьшить размер опухоли и облегчить ее хирургическое иссечение.

Открытие каждого нового класса химических соединений, обладающих противоопухолевой активностью, вызывало всплеск оптимизма, но всякий раз результаты оказывались значительно скромнее ожиданий. Первые лекарства от рака либо химически повреждали молекулы ДНК и белков (алкилирующие соединения: эмбихин, мелфалан, метилнитрозомочевина, циклофосфамид и др.), либо препятствовали процессу удвоения нити ДНК (антиметаболиты, первые из которых, метотрексат и 5-фторурацил, созданные в 1949 и 1956 годах соответственно, до сих пор применяют в онкологии). Позднее появились препараты, поражающие другие внутриклеточные мишени: противоопухолевые антибиотики (доксорубицин, блеомицин), вещества растительного происхождения (винбластин, паклитаксел, этопозид), комплексные соединения платины (цисплатин, карбоплатин). Несмотря на то что эти химические соединения действуют в клетках на самые разные молекулярные мишени, их объединяет способность избирательно подавлять рост и вызывать гибель опухолевых клеток при относительно малом повреждении клеток нормальных тканей. Параллельно с поиском новых противоопухолевых препаратов шло изучение молекулярных механизмов действия на клетку уже найденных и применявшихся на практике лекарств. По мере развития представлений о механизмах противоопухолевой активности разных препаратов стало очевидным, что вопрос о низкой эффективности химиотерапии опухолей неразрывно связан с другим, не менее актуальным. По словам академика Н. Н. Трапезникова, многие годы возглавлявшего Онкологический научный центр после Н. Н. Блохина, если раньше онкологи ставили вопрос, почему не действуют лекарственные препараты, то сейчас вопрос ставится иначе: а почему они действуют? Ответ на последний вопрос был найден совсем недавно.

Большинство противоопухолевых препаратов «первой волны» было отобрано в результате экспериментального поиска химических соединений, убивающих преимущественно опухолевые клетки (их называют веществами с потенциальной противоопухолевой активностью). Для этого ученые исследовали, как действуют на культуры раковых клеток миллионы природных и синтетических веществ. Этот метод называется методом случайного отбора, по-научному - рандомизированным скринингом. Далеко не каждое из отобранных соединений может впоследствии стать лекарством. Позднее ученые специально синтезировали химические соединения, которые теоретически должны ингибировать те или иные ферменты, важные для процесса клеточного деления. В результате этих двух подходов к поиску лекарств и был создан весь современный арсенал противоопухолевых средств.

Однако избирательность химиопрепаратов не абсолютна: в процессе лечения они наряду с опухолевыми часто поражают нормальные клетки, в первую очередь быстро обновляющихся тканей: костного мозга, эпителия желудочно-кишечного тракта и волосяных фолликулов кожи. Но если поражение фолликулов вызывает только облысение - досадный, однако временный косметический дефект, то массовая гибель клеток эпителия и костного мозга представляет реальную угрозу жизни пациентов.

Эффективность консервативных методов лечения рака до настоящего времени ограничена не только побочным токсическим действием на клетки нормальных тканей, но и лекарственной устойчивостью опухолей. Подавляющее большинство противоопухолевых природных и синтетических химических соединений действует на клетки непосредственно, проникая в них и поражая многообразные внутриклеточные молекулярные мишени. Ранее медики полагали, что противоопухолевые препараты вызывают в клетке несовместимые с жизнью химические повреждения биомакромолекул - в первую очередь нуклеиновых кислот и белков. Однако по мере развития наших представлений о механизмах программируемой клеточной гибели становилось очевидным, что практически все противоопухолевые лекарства от препаратов «первой волны» (эмбихин, 5-фторурацил, хлорамбуцил, метилнитрозомочевина) до современных (гемзар, флудара, паклитаксел, гливек, ритуксимаб) и даже перспективных (TRAIL, ET-18-OCH 3) весьма эффективно активируют программу клеточной смерти. Иными словами, цитотоксины не убивают клетки, а провоцируют их на совершение самоубийства. Несмотря на то что у раковой клетки нарушены функции генетического самоконтроля, лекарства, активирующие программу клеточной гибели, преимущественно поражают все-таки именно клетки опухоли! В этом состоит один из центральных парадоксов химиотерапии опухолей: система распознавания мутаций, поломка которой делает клетку восприимчивой к мутагенезу и ведет к ее опухолевому перерождению, представляет собой лишь часть «молекулярной кухни», реализующей программу клеточной гибели. Факт остается фактом - подавляющее большинство клеточных линий, то есть стационарно поддерживаемых в культуре раковых клеток одного происхождения, используемых для поиска противоопухолевых лекарств, способны к гибели в результате апоптоза.

Однако если действие противоопухолевых лекарств направлено именно на активацию программы клеточной гибели, то следует предположить, что раковая клетка, в которой генетическая программа ее собственной смерти повреждена или вовсе утрачена, должна оказаться устойчивой к действию всех известных препаратов. Доказательство такого предположения неожиданно было получено в нашей лаборатории в Онкологическом центре.

Клетки А4

В самом начале текущего века мы изучали активацию программы клеточной гибели моноклональными антителами к одному из рецепторов смерти, Fas. Этот рецептор появляется на поверхности зрелых лимфоцитов, а также присутствует на некоторых видах злокачественных лимфобластных клеток. Мы использовали моноклональные антитела к этому рецептору, которые имитируют действие природного лиганда FasL, возбуждают рецептор и активируют сигнал клеточного самоубийства. Для экспериментов мы выбрали хорошо известную линию Т-лимфобластных клеток человека Jurkat , выделенных много лет назад из крови больного лейкозом мальчика, на поверхности которых присутствует рецептор Fas. Добавление в питательную среду aнти-Fas-моноклональных антител вызывает быстрое развитие апоптоза этих клеток. Нам нужно было получить культуру, в которой клетки были бы лишены этого рецептора или чтобы рецептор оказался неработающим, то есть клетки, полностью устойчивые к действию анти-Fas-антител. Для этого мы использовали известный прием клеточной селекции, выращивая культуру в присутствии микроскопических концентраций антител. По мере роста культуры концентрацию антител постепенно увеличивали, пока не получили клетки, прекрасно растущие в среде с антителами. Поскольку полученная в результате этого эксперимента культура первоначально росла в чашке с номером А4, мы ее так и назвали - А4, еще не предполагая, что это чисто рабочее название присвоено совершенно уникальной клеточной линии.

По своему внешнему виду и набору поверхностных антигенов клетки А4 сходны с родительскими клетками Jurkat , но не имеют рецептора Fas, поэтому анти-Fas-антитела не стимулируют их гибель. Этот результат не был неожиданностью. Озадачивало другое: полученный клон в полной мере сохранил присущую родительской линии экспрессию рецепторов смерти других типов: АРО-2 для лиганда TRAIL и TNFR-1 для цитокина TNFa, однако применение этих лигандов не вызвало у клеток А4 никаких признаков апоптоза, хотя каждый из них активировал программу гибели родительских клеток Jurkat . Объяснение этому феномену могло быть только одно: устойчивость клеток А4 к апоптозу обусловлена не отсутствием соответствующего рецептора смерти, а нарушениями в каскаде последующих реакций передачи апоптозного сигнала.

Поскольку сигнальные каскады от «внешних» (рецепторы) и «внутренних» (поражение внутриклеточных мишеней) сигналов апоптоза сливаются в общий исполнительный механизм, мы попытались запустить программу клеточного самоубийства, действуя не на внешние рецепторы, а на внутриклеточные триггеры. Для этого клетки обрабатывали цитотоксическими лекарствами разных классов, индукторами окислительного клеточного стресса (перекисью водорода или витамином К 3), рентгеновским и ультрафиолетовым излучением. Во всех случаях доля клеток с признаками индуцированного апоптоза в популяции клона А4 оказывалась в 2–10 раз ниже, чем у клеток Jurkat .

Из наших результатов следует, что стимулы самой различной природы, активирующие программу клеточной гибели опухолевых клеток Jurkat , практически не вызывают апоптоз клеток клона А4. Означает ли этот факт, что клетки А4 нельзя убить? Разумеется, нет. Клетки А4 можно умертвить, но такой дозой лекарства, которая несовместима с жизнью пациента. На родительскую линию Jurkat цитостатики действуют в концентрациях на один-два порядка ниже. Другими словами, не способные к апоптозу клетки А4 проявляют фенотип множественной лекарственной устойчивости.

Чтобы выяснить, как клеточная культура реагирует на то или иное лекарство, ее обычно обрабатывают препаратами в концентрации, вызывающей гибель ровно половины клеток (LD 50), и наблюдают за судьбой второй половины, пережившей токсическую атаку. В дальнейших исследованиях мы выращивали клетки обеих линий в среде с цитостатиками цисплатином, доксорубицином или этопозидом (каждое из этих лекарств вызывает апоптоз клеток Jurkat ). Для клеток А4 концентрации лекарств LD 50 были в 30–100 раз выше. Подсчет и морфологический анализ клеток, переживших цитотоксическую атаку, показал, что клетки Jurkat погибают в основном по механизму апоптоза, а клетки А4 - путем некроза, безвременной и неестественной кончины клетки, попавшей в невозможные для жизни условия; их ядро и цитоплазма набухают, а затем разрываются ядерная и клеточная мембраны. Различной оказалась и судьба потомков выживших в этих условиях клеток обеих линий: после пересева в полную питательную среду клетки Jurkat восстановили исходный облик и скорость роста через три недели, хотя в культуре было еще довольно много умирающих клеток. Потомки клеток А4 даже спустя три недели культивирования продолжали гибнуть в огромном количестве. В их популяции появились как многоядерные клетки, так и клетки с микроядрами - результат неравномерного распределения генетического материала в процессе деления.

Клетки Jurkat , служившие исходным материалом в нашем исследовании, не экспрессируют белок р53, поэтому их геном достаточно изменчив и склонен к накоплению дополнительных мутаций. Вероятно, клетки А4, отобранные из общей популяции в результате Fas-опосредованной селекции, представляют собой клон, появившийся в результате одной или нескольких таких мутаций, природа которых пока не установлена. Собственно, она и не важна и, скорее всего, представляет лишь один из множества возможных вариантов. Важен результат: утратив программу клеточной гибели, клетки А4 получили возможность выжить в присутствии таких высоких концентраций противоопухолевых лекарств, которые больной перенести не может, следовательно - формировать опухолевую ткань, абсолютно устойчивую к лекарственному лечению.

Поскольку клон А4 сформировался спонтанно, можно предположить, что и у онкологических больных клетки, утратившие программу клеточной гибели, могут возникать на разных этапах прогрессии опухоли, независимо от того, какими лекарствами их лечат. И весь имеющийся арсенал специфических противоопухолевых средств оказывается бессильным перед таким клоном.

Эта ситуация - печальное следствие применяемой до настоящего времени методологии отбора новых противоопухолевых лекарств, при которой используют клеточные линии, в большей или меньшей степени сохраняющие способность к программированной гибели. В результате такого скрининга отбирают наиболее эффективные индукторы апоптоза, которые не представляют реальной опасности для опухолевых клеток, утративших к нему способность.

Существует ли выход из тупика? Сегодня на этот вопрос нет ответа. Однако стоит обратить внимание на тот факт, что выжившая после обработки цитотоксинами часть культуры А4 продолжала погибать на протяжении нескольких десятков клеточных делений, происходивших в отсутствие лекарственных препаратов. Этот известный в радиобиологии феномен называется «репродуктивной гибелью», которая наблюдается в том случае, если полученные клеткой генетические повреждения становятся смертельными после одного или нескольких циклов удвоения ДНК. Если же смерть клетки от внешнего воздействия происходит до первого деления, говорят об интерфазной гибели. Почему же «неубиваемые» клетки А4 гибнут без внешних причин? Как это ни парадоксально звучит, причиной их гибели является утрата способности к апоптозу.

«Обычные» раковые клетки сохраняют способность к апоптозу. Поэтому их часть, получившая опасные повреждения, самоликвидируется, но зато оставшиеся клетки продолжают размножаться, как в случае с Jurkat , и опухоль живет. А клеткам с утраченной программой гибели ничто не препятствует бесконтрольно накапливать мутации и другие потенциально опасные повреждения, которые могут и не приводить к смерти в интерфазе, но будут препятствовать нормальному процессу клеточного деления и разрушать работу генов, что в конце концов создает ситуацию, несовместимую с дальнейшей жизнью. Поэтому с клетками, на которые не действуют индукторы апоптоза, можно попробовать бороться иным путем: стимулировать образование в них мутаций, чтобы сумма возникших генетических повреждений привела к утрате жизнеспособности их самих и в особенности их потомков. Для этой цели можно попытаться использовать супермутагены или хроническое облучение малыми дозами ионизирующей радиации. Успех будущих исследований во многом зависит от правильного выбора модели для поиска активных соединений.

Мы полагаем, что полученная нами линия клеток А4, а также подобные ей, могут оказаться полезными моделями для поиска принципиально новых противоопухолевых средств, действие которых не ограничится активацией апоптоза. Конечно, существует опасность побочного влияния таких веществ и на клетки нормальных тканей, ведь мутации будут возникать и в их геномах. Но, в отличие от опухолевых, в них продолжает функционировать механизм генетического самоконтроля, не позволяющий тиражировать генетические дефекты в следующих поколениях. Насколько перспективным окажется использование в лечебных целях супермутагенов, покажет будущее.