Состав альфа частицы. Как защититься от альфа-излучения? Какие радионуклиды представляют собой большую опасность

Навигация по статье:


Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение , или еще проще радиация . К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.



Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение - это излучение энергии.


Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое


Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация:
  • биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.


Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!



Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.




Видео:


Альфа-частица
Alpha particle

Альфа-частица (или α-частица) – ядро атома гелия, состоящее из связанных вместе двух протонов и двух нейтронов. Обычно обозначается α или , где верхний индекс - полное число протонов и нейтронов в ядре гелия, а нижний – число протонов. Альфа-частица имеет заряд +2е, где е – величина элементарного заряда, и обладает повышенной устойчивостью и плотностью. Она представляет собой сферически симметричный объект радиусом около 2·10 -13 см. Плотность материи и электрического заряда максимальна в центре альфа-частицы и спадает к её периферии.
По распространённости в природе (около 9% всех ядер) ядра гелия уступают только ядрам водорода (около 90%). Масса альфа-частицы 4.0015 атомных единиц массы или 6.645·10 -27 кг. Энергия, необходимая для расщепления альфа-частицы на составляющие её протоны и нейтроны, около 28.3 МэВ (или 4.53·10 -13 Дж). Альфа-частицы самопроизвольно испускаются при распаде многих тяжёлых ядер. Возникающий при этом вид распада (радиоактивности) атомных ядер носит название альфа-распада или альфа-радиоактивности.
Вылетевшая из ядра, α-частица пролетает в воздухе расстояние несколько сантиметров и в результате торможения останавливается. Для защиты от альфа-частиц достаточно слоя воздуха в несколько сантиметров или листа папиросной бумаги.

Слово радиация, в переводе с английского "radiation" означает излучение и применяется не только в отношении радиоактивности, но целого ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Поэтому в отношении радиоактивности следует применять принятое МКРЗ (Международной комиссией по радиационной защите) и Нормами радиационной безопасности понятие "ионизирующее излучение".

ионизирующее излучение ( ИОНИЗИРУЮЩАЯ РАДИАЦИЯ )?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое при взаимодействии с веществом непосредственно или косвенно вызывает ионизацию и возбуждение его атомов и молекул. Энергия ионизирующего излучения достаточно велика, чтобы при взаимодействии с веществом, создать пару ионов разных знаков, т.е. ионизировать ту среду в которую попали эти частицы или гамма кванты.

Ионизирующее излучение состоит из заряженных и незаряженных частиц, к которым относятся также фотоны.

Что такое радиоактивность?

Радиоактивность - самопроизвольное превращение атомных ядер в ядра других элементов. Сопровождается ионизирующим излучением. Известно четыре типа радиоактивности:

  • альфа-распад - радиоактивное превращение атомного ядра при котором испускается альфа-частица;
  • бета-распад - радиоактивное превращение атомного ядра при котором испускается бета-частицы, т.е электроны или позитроны;
  • спонтанное деление атомных ядер - самопроизвольное деление тяжелых атомных ядер (тория, урана, нептуния, плутония и других изотопов трансурановых элементов). Периоды полураспада у спонтанно делящихся ядер составляют от нескольких секунд до 1020 для Тория-232;
  • протонная радиоактивность - радиоактивное превращение атомного ядра при котором испускаются нуклоны (протоны и нейтроны).

Что такое изотопы?

Изотопы - это разновидности атомов одного и того же химического элемента, обладающие разными массовыми числами, но имеющие одинаковый электрический заряд атомных ядер и потому занимающие в периодической системе элементов Д.И. Менделеева одинаковое место. Например: 55Cs131, 55Cs134m, 55Cs134, 55Cs135, 55Cs136, 55Cs137. Различают изотопы устойчивые (стабильные) и неустойчивые - самопроизвольно распадающиеся путем радиоактивного распада, так называемые радиоактивные изотопы. Известно около 250 стабильных, и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить Pb206, Pb208 являющийся конечным продуктом распада радиоактивных элементов U235, U238 и Th232.

ПРИБОРЫ ДЛЯ измерения радиации и радиоактивности.

Для измерения уровней радиации и содержания радионуклидов на различных объектах используются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, используются дозиметры различного назначения;
  • для определения вида радионуклида и его содержания в объектах окружающей среды используются спектрометрические тракты, состоящие из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время в магазинах можно купить различные виды измерителей радиации различного типа, назначения, и обладающие широкими возможностями. Для примера приведём несколько моделей приборов, которые наиболее популярные в профессиональной и бытовой деятельности:

Профессиональный дозиметр-радиометр, был разработан для радиационного контроля денежных купюр операционистами банков, в целях исполнения "Инструкция Банка России от 04.12.2007 N 131-И "О порядке выявления, временного хранения, гашения и уничтожения денежных знаков с радиоактивным загрязнением"".

Лучший бытовой дозиметр от ведущего производителя, данный портативный измеритель радиации зарекомендовал себя временем. Благодаря простому использованию, небольшому размеру и низкой цене, пользователи назвали его народным, рекомендуют его друзьям и знакомым, не боясь за рекомендацию.

СРП-88Н (сцинтилляционный радиометр поиска) - профессиональный радиометр предназначен для поиска и обнаружения источников фотонного излучения. Имеет цифровой и стрелочный индикаторы, возможность установки порога срабатывания звукового сигнализатора, что значительно облегчает работу при обследовании территорий, проверки металлолома др. Блок детектирования выносной. В качестве детектора используется сцинтилляционный кристалл NaI. Автономный источник питания 4 элемента Ф-343.

ДБГ-06Т - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения. Источник питания гальванический элемент типа «Корунд».

ДРГ-01Т1 - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения.

ДБГ-01Н - предназначен для обнаружения радиоактивного загрязнения и оценки с помощью звукового сигнализатора уровня мощности эквивалентной дозы фотонного излучения. Источник питания гальванический элемент типа «Корунд». Диапазон измерения от 0.1 мЗв*ч-1 до 999.9 мЗв*ч-1

РКС-20.03 «Припять» - предназначен для контроля радиационной обстановки в местах проживания, пребывания и работы.

Дозиметры позволяют измерять:

  • величину внешнего гамма-фона;
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих)
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей;
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих).

Как выбрать измеритель радиации и другие приборы для измерения радиации вы можете прочитать в статье "Бытовой дозиметр и индикатор радиоактивности. как выбрать? "

Какие виды ионизирующего излучения существуют?

Виды ионизирующего излучения. Основными видами ионизирующего излучения, с которыми нам чаще всего приходится сталкиваться являются:



Конечно существуют и другие виды излучения (нейтронное), но с ними мы сталкиваемся в повседневной жизни значительно реже. Различие этих видов излучения заключается в их физических характеристиках, в происхождении, в свойствах, в радиотоксичности и поражающем действии на биологические ткани.

Источники радиоактивности могут быть природными или искусственными. Природные источники ионизирующего излучения это естественные радиоактивные элементы находящиеся в земной коре и создающие природный радиационный фон, это ионизирующее излучение приходящее к нам из космоса. Чем больше активность источника (т.е. чем больше в нем распадается атомов за единицу времени), тем больше он испускает за единицу времени частиц или фотонов.

Искусственные источники радиоактивности могут содержать радиоактивные вещества полученные в ядерных реакторах специально или являющиеся побочными продуктами ядерных реакций. В качестве искусственных источников ионизирующего излучения могут быть и различные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Основными поставщиками радия-226 в окружающую природную среду являются предприятия занимающиеся добычей и переработкой различных ископаемых материалов:

  • добыча и переработка урановых руд;
  • добыча нефти и газа; угольная промышленность;
  • промышленность строительных материалов;
  • предприятия энергетической промышленности и др.

Радий-226 хорошо поддается выщелачиванию из минералов содержащих уран, этим его свойством объясняется наличие значительных количеств радия в некоторых видах подземных вод (радоновых применяемых в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах колеблется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л. Существенной составляющей природной радиоактивности является продукт распада радия-226- радий-222 (Радон). Радон - инертный, радиоактивный газ, наиболее долгоживущий (период полураспада 3.82 дня) изотоп эманации *, альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому преимущественно накапливается погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д. * - эманирование- свойство веществ содержащих изотопы радия (Ra226, Ra224, Ra223), выделять образующиеся при радиоактивном распаде эманацию(радиоактивные инертные газы).

Считается, что до 70% вредного воздействия на население связано с радоном в жилых зданиях (см. диаграмму). Основным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, глина, шлаки, золошлаки и др.);
  • почва под зданиями.

Распространяется радон в недрах Земли крайне не равномерно. Характерно его накопление в тектонических нарушениях, куда он поступает по системам трещин из пор и микротрещин пород. В поры и трещины он поступает за счет процесса эманирования, образуясь в веществе горных пород при распаде радия-226.

Радоновыделение почвы определяется радиоактивностью горных пород, их эманированием и коллекторными свойствами. Так, сравнительно слаборадиоактивные породы, оснований зданий и сооружений могут, представлять большую опасность, чем более радиоактивные, если они характеризуются высоким эманированием, или рассечены тектоническими нарушениями, накапливающими радон. При своеобразном «дыхании» Земли, радон поступает из горных пород в атмосферу. Причем в наибольших количествах - из участков на которых имеются коллекторы радона (сдвиги, трещины, разломы и др.), т.е. геологические нарушения. Собственные наблюдения за радиационной обстановкой в угольных шахтах Донбасса показали, что в шахтах, характеризующихся сложными горно-геологическими условиями (наличие множественных разломов и трещин в угле вмещающих породах, высокая обводненность и др.) как правило, концентрация радона в воздухе горных выработок значительно превышает установленные нормативы.

Возведение жилых и общественно-хозяйственных сооружений непосредственно над разломами и трещинами горных пород, без предварительного определения радоновыделения из почвы, приводит к тому, что в них из недр Земли поступает грунтовый воздух, содержащий высокие концентрации радона, который накапливается в воздухе помещений и создает радиационную опасность.

Техногенная радиоактивность возникает в результате деятельности человека в процессе которой происходит перераспределение и концентрирование радионуклидов. К техногенной радиоактивности относится добыча и переработка полезных ископаемых, сжигание каменного угля и углеводородов, накопление промышленных отходов и многое другое. Уровни воздействия на человека различных техногенных факторов иллюстрирует представленная диаграмма 2 (А.Г. Зеленков "Сравнительное воздействие на человека различных источников радиации", 1990 г.)

Что такое "черные пески" и какую опасность они представляют?

Черные пески представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO4, которые замещаются торием. Монацит содержит до 50-60% окисей редкоземельных элементов: окиси иттрия Y2O3 до 5%, окиси тория ThO2 до 5-10%, иногда до 28%. Удельный вес монацита составляет 4.9-5.5. С повышением содержания тория уд. вес возрастает. Встречается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород включающих монацит, он накапливается в россыпях, которые представляют собой крупные месторождения.

Такие месторождения наблюдаются и на юге Донецкой области.

Россыпи монацитовых песков находящиеся на суше, как правило не вносят существенного изменения в сложившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области) создают ряд проблем особенно с наступлением купального сезона.

Дело в том, что в результате морского прибоя за осенне-весенний период на побережье, в результате естественной флотации, скапливается значительное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк*кг-1 и более), который создает на локальных участках уровни гамма-излучения порядка 300 и более мкР*час-1. Естественно, отдыхать на таких участках рискованно, поэтому, ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются отдельные участки побережья. Но все это не позволяет предотвратить нового накопления "черного песка".

Позволю высказать по этому поводу личную точку зрения. Причиной, способствующей выносу "черного песка" на побережье, возможно является тот факт, что на фарватере Мариупольского морского порта постоянно работают земснаряды по расчистке судоходного канала. Грунт, поднятый со дна канала, сваливается западнее судоходного канала, в 1-3 км от побережья (см. карту размещения мест свалки грунта), и при сильном волнении моря, с накатом на прибрежную полосу, грунт содержащий монацитовый песок выносится на побережье, где обогащается и накапливается. Однако все это требует тщательной проверки и изучения. И если это как, то снизить накопление "черного песка" на побережье, возможно, удалось бы просто переносом места свалки грунта в другое место.

Основные правила выполнения дозиметрических измерений.

При проведении дозиметрических измерений, прежде всего, необходимо строго придерживаться рекомендаций изложенных в технической документации на прибор.

При измерении мощности экспозиционной дозы гамма-излучения или эквивалентной дозы гамма-излучения необходимо соблюдать следующие правила:

  • при проведении любых дозиметрических измерений, если предполагается их постоянное проведения с целью наблюдения за радиационной обстановкой, необходимо строго соблюдать геометрию измерения;
  • для повышения достоверности результатов дозиметрического контроля проводится несколько измерений (но не менее 3-х), и вычисляется среднее арифметическое;
  • при выполнении измерений на территории выбирают участки вдали от зданий и сооружений (2-3 высоты); -измерения на территории проводят на двух уровнях, на высоте 0.1 и 1.0 м от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в центре помещения на высоте 1.0 м от пола.

При измерении уровней загрязнения радионуклидами различных поверхностей необходимо выносной датчик или прибор в целом, если выносного датчика нет, поместить в полиэтиленовый пакет (для предотвращения возможного загрязнения), и проводить измерение на максимально возможно близком расстоянии от измеряемой поверхности.

Мы уже упоминали о многочисленных попытках повлиять на способность радия излучать радиоактивные лучи. Эти попытки не привели ни к какому результату. Однако, пытаясь воздействовать на радий магнитным полем, Пьер и Мария Кюри обнаружили, что хотя лучеиспускающая способность радия при помещении его в магнитное поле не меняется (интенсивность излучения остаётся неизменной), сами радиоактивные лучи претерпевают сильное изменение при прохождении через магнитное поле. Однородный до вступления в магнитное поле луч разделяется полем на два луча. Один из этих лучей рас-пространяется так, как если бы магнитное поле на него совершенно не действовало; другой луч под влиянием поля резко изменяет направление своего движения.

Ко времени опытов Беккереля физикам уже были известны лучи, способные отклоняться в магнитном поле. Это были лучи, образованные потоком электрически заряженных частиц, движущихся в одном направлении. Из направления отклонения можно определить знак заряда, т. е. установить, является ли заряд частицы положительным или отрицательным. Более подробные сведения могли быть получены при наблюдении движения этих частиц в магнитном и электрическом полях. Как мы увидим далее, в этом случае возможно определить не только заряд, но и его отношение к массе движущейся частицы. Из опытов Кюри вытекало, что движущиеся заряды отрицательны, а измеренное отношение заряда к массе оказа-лось равным 5,3-10 17 электростатических единиц на грамм. Таким же отношением заряда к массе обладают электроны, имеющие отрицательный электрический заряд. Из этого сопо-ставления можно было заключить, что по крайней мере часть лучей, испускаемых радием, представляет собой поток движу-щихся электронов.

Была измерена величина скорости электронов, испускаемых радием. Она оказалась весьма большой. Некоторые из элек-тронов имели скорость, близкую к скорости света, т. е. около 3.00 000 км в секунду.

Эти исследования немного приоткрыли таинственное покры-вало, окутывающее радиоактивные лучи, - оказалось, что часть их представляет собой поток движущихся электронов. Но что же представляет собой другая часть лучей, которая не отклоняется магнитным полем?

За её исследование взялся Резерфорд. Он заметил, что неотклоняемая в магнитном поле часть радиоактивных лучей обладает такими же странными особенностями в поглощении, как и весь пучок. Хорошо было известно и раньше, что при прохождении радиоактивных лучей через вещество различной толщины они поглощаются сначала очень сильно, а затем медленно, так что, в общем, они могут проходить через зна-чительные толщи вещества. Поэтому можно было думать, что радиоактивные лучи неоднородны и представляют собой «смесь» различных лучей, одни из которых поглощаются сильно, а другие слабо. Такая мысль до опытов Пьера и Марии Кюри никем не высказывалась. Однако, когда опыты Кюри подтвер-дили сложность состава радиоактивного излучения, естественно было предположить, что сильно поглощаемая часть излучения является потоком электронов, а другая часть этих лучей, которая, подобно лучам Рентгена, не отклоняется магнитом, так же как и лучи Рентгена, сравнительно слабо поглощается веществом. Опыт, однако, показал, что эта часть радиоактив-ных лучей ведёт себя в отношении поглощения так же, как и весь пучок. Уже очень тонкие слои вещества резко ослаб-ляют её интенсивность, а затем даже сравнительно толстые слои вещества поглощают остающиеся лучи незначительно.

Это различие и побудило Резерфорда к дальнейшим ис-следованиям.

А что, если и та часть лучей радия, которую Пьер и Ма-рия Кюри не смогли отклонить магнитным полем, тоже не-однородна? Что, если они пользовались слабым магнитным полем? Может быть, сильное магнитное поле окажет иное действие? И Резерфорд повторяет их опыты, но при этом он создаёт магнитное поле, гораздо более сильное, чем в их опытах.

Результат опытов Резерфорда оказался поразительным. Пучок лучей, который в опытах Кюри не отклонялся магнит-ным полем, в магнитном поле Резерфорда в свою очередь расщепился на две части. Одна из них по-прежнему не откло-нялась магнитным полем, а другая часть под действием силь-ного магнитного поля слегка отклонялась от своего первона-чального направления. Весьма интересным оказалось то, что эти лучи отклоня-лись в сторону, противоположную отклонению электронов. Следовательно, и эта часть радиоактивных лучей представ-ляет собой поток заряженных частиц (ибо на движение не-заряженных частиц магнитное поле не действует) и притом заряженных положительно. Опыт показал, что новые состав-ляющие радиоактивных лучей в отношении поглощения вели себя вполне определённым образом.

Рис. 1.

1 --радиоактивное вещество; 2 -- свинцовая коробочка с тонким каналом, в котором помещается радиоактивное вещество; 3 -- лучи, не отклонённые магнитным полем (гамма-лучи); 4 -- лучи, слабо отклоняемые магнитным полем (альфа-лучи); 5 -- лучи, сильно отклоняемые магнитным полем (бе-та-лучи); 6 --область, в которой создано магнитное поле.

Та часть радиоактивного излучения, которая совершенно не отклонялась магнитным полем, поглощалась очень незна-чительно. Та же часть радиоактивного излучения, которую

Резерфорду впервые удалось отклонить, поглощалась чрез-вычайно сильно.

Создавалось впечатление, что лучи, наблюдавшиеся вначале Беккерелем, пред-ставляют собой смесь трёх типов лучей.

На рис. 1 приведено схе-матическое изображение раз-деления радиоактивных лу-чей магнитным полем.

Радиоактивные лучи со-стоят из лучей трёх различ-ных типов. Каждый из них получил своё особое название и обозначение. Их обозначили и назвали тремя первыми бук-вами греческого алфавита: альфа (), бета () и гамма (). Альфа-лучами назвали те лу-чи, которые магнитным полем отклоняются слабо и представляют собой поток положительно заряженных ча-стиц. Бета-лучами стали назы-вать те лучи, которые сравни-тельно сильно отклоняются магнитным полем и представ-ляют собой поток электронов. Гамма-лучами стали называть лучи, которые совсем не отклоняются магнитным полем. Следует отметить, что альфа-лучи отклоняются в маг-нитном поле в виде узкого пучка, в то время как бета-лучи отклоняются магнитным полем в виде широкого размы-того пучка. Это обстоятельство говорит о том, что альфа-лучи, вылетающие из радия, имеют одинаковую энергию, а бета-лучи представляют собой поток электронов различной энергии.

Разделение радиоактивных лучей на альфа-, бета- и гамма--лучи позволило исследовать их свойства отдельно. Вот неко-торые результаты этих исследований.

Альфа-лучи поглощаются наиболее сильно. Тонкий листо-чек слюды или алюминия толщиной всего лишь в 0,05 мм поглощает альфа-лучи почти полностью. Достаточно завер-нуть радий в обыкновенную писчую бумагу, чтобы поглотить все альфа-лучи. Альфа-лучи сильно поглощаются воздухом. Слой воздуха толщиной всего лишь в 7 см поглощает альфа-лучи радия почти нацело.

Бета-лучи поглощаются веществом значительно слабее. Они в состоянии ещё в заметном количестве пройти через пластинку алюминия толщиной в несколько миллиметров.

Гамма-лучи поглощаются во много раз слабее бета-лучей. Они проходят через пластинку алюминия толщиной в несколько десятков сантиметров. Пластинка свинца толщиной в 1,3 см ослабляет интенсивность гамма-лучей всего лишь в два раза.

Помимо различия в степени поглощения, между альфа-, бета- и гамма-лучами существует большое различие в характере поглощения. Наиболее отчётливо оно проявляется в изменении интенсивности этих лучей при постепенном возрастании тол-щины поглощающего вещества.

Бета- и гамма-лучи поглощаются постепенно. Уже самые небольшие слои вещества в некоторой мере поглощают эти лучи. Число электронов и интенсивность гамма-лучей постепенно падают с увеличением толщины фильтрующего слоя.

Альфа-лучи ведут себя совершенно иначе. При прохожде-нии через малые слои вещества число альфа-частиц не изме-няется. Уменьшается только энергия этих частиц. С возра-станием толщины поглощающего слоя энергия частиц про-должает уменьшаться, но число их сохраняется. Так будет происходить до тех пор, пока толщина поглощающего слоя не достигнет некоторой определённой величины. Фильтр та-кой толщины задержит сразу все альфа-частицы.

Таким образом, каждая альфа-частица проходит в дан-ном веществе вполне определённый путь. Этот путь принято называть пробегом альфа-частицы. Пробег альфа-частицы за-висит от её энергии и от природы вещества, в котором она движется. Установив связь между пробегом и энергией альфа-частиц, можно в дальнейшем по величине пробега определять энергию альфа-частиц. Таким методом измерения энергии альфа-частиц широко пользуются на практике.

Сильное поглощение альфа-частиц может быть использовано для изучения их свойств.

Если взять радиоактивное вещество в виде шарика, то альфа-лучи, выходящие из всего объёма этого шарика, по-глощаются в самом шарике. Лишь очень тонкий поверхностный слой этого вещества испускает альфа-лучи, способные выйти наружу. Поэтому вне такого шарика должны наблюдаться главным образом бета- и гамма-лучи. Если же радиоактив-ное вещество распределить очень тонким слоем, то будут дей-ствовать почти- в одинаковом количестве все три рода лучей.

Сравнением действия радиоактивных лучей от толстого ра-диоактивного источника с действием радиоактивного препарата, распределённого в виде очень тонкого слоя, было установлено, что именно альфа-лучи ответственны за то, что радиоактивные лучи вызывают флюоресценцию и делают воздух проводником электричества.

Хорошо известно, что воздух делается проводником элек-тричества в том случае, если в нём образуются заряженные атомы - ионы. Альфа-лучи ионизуют воздух примерно в сто раз сильнее, чем бета- и гамма-лучи от того же радиоактив-ного источника. Но на образование ионов - на ионизацию воздуха требуется энергия. Было установлено, что на обра-зование одной пары ионов в воздухе требуется вполне опреде-лённая энергия, равная 33 электрон-вольтам В ядерной физике очень употребительна единица энергии, которую принято называть электрон-вольтом. Один электрон-вольт - это энергия, которую приобретает электрон, проходящий в электри-ческом поле разность потенциалов в 1 вольт. Один электрон-вольт - очень малая единица энергии, равная всего лишь 1,6-10- 1Э джоуля. Так как альфа-частицы образуют много ионов, то при своём движении в воздухе они тратят большое количество энергии. Этим и объясняется описанное ранее свойство альфа-лучей сильно поглощаться различными веществами. Впоследствии мы расска-жем, как было измерено число пар ионов, создаваемых одной альфа-частицей. Сейчас мы ограничимся только указанием этой цифры. Оказалось, что одна альфа-частица создаёт в воз духе около 200000 пар ионов. Это позволяет нам оценить энергию одной альфа-частицы. Энергия альфа-частицы оказа-лась приблизительно равной 6000000 электрон-вольт.

Следующая страница>>

§ 1. Ионизирующие излучения, их определение и свойства. Радиоактивность.

Альфа-лучи. Бета-лучи. Гамма-лучи. Рентгеновские лучи.

Радиоактивность - самопроизвольное превращение ядер одних атомов в ядра других атомов, сопровождающееся испусканием ионизирующих излучений.

Радиоактивное излучение называют ионизирующим, так как при взаимодействии с веществом оно способно прямо или косвенно создавать в нем заряженные атомы и молекулы (ионы). К ионизирующим излучениям относятся рентгеновские лучи, радио- и гамма-лучи, альфа-лучи, бета-лучи, потоки нейтронов и других ядерных частиц, космические лучи.

Альфа-лучи представляют собой поток α-частиц положительно заряженных ядер атомов гелия и характеризуются большой ионизирующей и малой проникающей способностями. Вследствие этих свойств α-частицы не проникают через внешний слой кожи. Вредное воздействие на организм человека проявляется при нахождении его в зоне действия вещества, излучающего α-частицы.

Бета-лучи представляют собой поток электронов или позитронов, излучаемых ядрами атомов радиоактивных веществ. По сравнению с α-частицами они обладают большей проникающей способностью и поэтому одинаково опасны как при непосредственном прикосновении к излучающему веществу, так и на расстоянии.

Гамма-лучи характеризуются наименьшей ионизирующей и наибольшей проникающей способностью. Это высокочастотное электро-магнитное излучение, возникающее в процессе ядерных реакций или радиоактивного распада.

Рентгеновские лучи, возникающие при бомбардировке вещества потоком электронов, являются также электромагнитным излучением. Они могут возникнуть в любых электровакуумных установках, обладают малой ионизирующей способностью и большой глубиной проникновения.

Для количественной оценки действия, производимого любыми ионизирующими излучениями в среде, пользуются понятием поглощенная доза излучения Д п =W/m,

где W - энергия ионизирующего излучения, поглощенная облученным веществом, Дж; m - масса облученного вещества, кг. Внесистемной единицей поглощенной дозы является рад. 1 рад соответствует поглощению энергии 0,01 Дж веществом массой 1 кг.

Количественной характеристикой рентгеновского и гамма-излучений является экспозиционная доза (Кл/кг): Д э = Q/m,

где Q - суммарный электрический заряд ионов одного знака, Кл; m - масса воздуха, кг.

За единицу экспозиционной дозы рентгеновского и гамма-излучений принимают кулон на килограмм (Кл/кг). Кулон на килограмм - экспозиционная доза рентгеновского или гамма-излучения, при которой сопряженная с этим излучением корпускулярная эмиссия на 1 кг сухого атмосферного воздуха создает в воздухе ионы, несущие заряд 1 Кл электричества каждого знака.

Внесистемной единицей экспозиционной дозы рентгеновского и гамма-излучений является рентген. Рентген -это такая доза рентгеновского или гамма-излучения, при которой сопряженная с этим излучением корпускулярная эмиссия в 1,293*10 -6 г сухого воздуха при нормальных условиях (при температуре 0° С и давлении 760 мм рт. ст.) образует ионы, несущие 1 ед. заряда СГС каждого знака; 1 рентген (Р) = 10 3 миллирентген (мР) = 10 6 микрорентген (мкР).

Экспозиционная и поглощенная дозы, отнесенные ко времени, определяются как мощности доз и измеряются соответственно рентген в секунду (Р/с) и рад в секунду (рад/с).

Воздействие различных радиоактивных излучений на живые ткани зависит от проникающей и ионизирующей способности излучения. Разные виды излучений при одинаковых значениях поглощенной дозы вызывают различный биологический эффект. Поэтому для оценки радиационной опасности введено понятие эквивалентной дозы Д экв, единицей которой является бэр (биологический эквивалент рада) *

Д экв =Д и /k,

* 1 бэр - эквивалентная доза любого ионизирующего излучения в биологической ткани, которая создает такой же биологический эффект, что и доза в 1 рад рентгеновского или гамма-излучения,

где k - качественный коэффициент, показывающий отношение биологической эффективности данного вида излучений к биологической эффективности рентгеновского излучения, принятого за единицу.