Исследования системы крови у животных. Морфологическое исследование состава периферической крови Другие исследования крови

Форменные элементы крови--красные кровяные клетки, белые кро­вяные клетки и кровяные пластинки--имеют своеобразное строение и выполняют специфическую роль в организме.

У рептилий и рыб они овальной формы и содержат ядро. У большинства млекопитающих эритроциты круглой формы (только у верблюда и ла­мы--овальной (рис. 52) и имеют форму плоской тарелочки с углубле­ниями посредине, поэтому в профиль выглядят двояковогнутыми. Цвет

Эритроцитов зеленовато-желтый, в толстом слое они кажутся красными. Эритроциты и придают крови характерный красный цвет.

Эритроцит состоит из нежной сетчатой стромы (остова) и поверх­ностного, более уплотненного слоя.

Эритроцит, как это сейчас установлено, представляет собой жидкую каплю, состоящую из гидрофильной коллоидной системы, в которой непрерывная фаза состоит из солей и воды, и дисперсная -- из белко­вых веществ, гемоглобина и некоторых солей. Поверхностный слой эри­троцитов состоит из липоидов; он обладает избирательной проницаемо­стью. Например, поверхностный слой эритроцитов проницаем для воды, глюкозы, мочевины, анионов и других веществ и непроницаем для кати­онов. Благодаря этому эритроциты удерживают свой специфический со­став, особенно состав солей.

При нормальных условиях гемоглобин--пигмент крови--не диф­фундирует через оболочку эритроцита. В гипотонических растворах происходит разрушение эритроцитов с выходом гемоглобина в раст­вор. Этот процесс называется гемолизом. Гемолиз эритроцитов крови теплокровных животных происходит в растворах с концентрацией солей ниже 0,7%. Устойчивость эритроцитов несколько различна у раз­ных видов животных.

Гемолиз крови в организме происходит и под влиянием некоторых ядов, например, яда некоторых змей, а также под влиянием особых ве­ществ -- гемолизинов, образующихся в самом организме при введении в кровь животного одного вида эритроцитов животного другого вида.

Способность эритроцитов противостоять понижению осмотического давления может меняться при различных состояниях организма, осо­бенно при некоторых заболеваниях. Вот почему определение устой­чивости, или резистентности эритроцитов, по отношению к гемолизу приобрело практическое значение. На устойчивость эритроци­тов влияют ионы плазмы. К" и СУ понижают устойчивость, Са" и НРО повышают ее.

Эритроциты эластичны, растяжимы и гибки, в силу чего легко из­меняют форму, особенно проходя с током крови через капилляры, диаметр которых меньше диаметра эритроцита.

Своеобразная форма эритроцитов способствует увеличению их по­верхности. Сплющенная форма с вдавлениями посредине увеличивает общую поверхность эритроцита на 20%, по сравнению с шарообразной формой. Общая поверхность всех эритроцитов крови животного дости­гает больших величин; так, например, поверхность эритроцитов всей крови коровы равна 16000 М2, т. е. превышает 1,5 Га.

Огромная поверхность облегчает поглощение и отдачу эритроци­тами кислорода, что является их основной функцией.

Безъядерные эритроциты более приспособлены к выполнению этой функции, чем ядерные, имеющиеся, например, у птиц. Объясняется это тем, что ядерные эритроциты, как полноценные клетки, имеют интен­сивный обмен веществ и поэтому значительную часть кислорода потреб­ляют сами, тогда как у эритроцитов млекопитающих, не имеющих ядра, обмен веществ значительно понижен, они мало используют кисло­рода для собственного обмена.

Химический состав эритроцитов следующий: воды--60% и сухого вещества--40%. 90% сухого вещества составляет гемоглобин, а ос­тальные 10% состоят из других белков (5,8%), липоидов, глюкозы и минеральных веществ. Эритроциты содержат ферменты: каталазу, карбоангидразу и др. В составе эритроцитов преобладают ионы калия, в то время как в плазме крови, наоборот, больше натрия.

Кроме своей основной функции -- поглощения кислорода в легких и переноса его в капилляры тканей, эритроциты способствуют также переносу из капилляров тканей в легкие углекислоты.

Эритроциты участвуют и в переносе питательных веществ: они пе­реносят аминокислоты, адсорбируя их на своей поверхности. Красные кровяные клетки играют известную роль в явлениях иммунитета, ад­сорбируя на себе различные яды, которые затем разрушаются клет­ками ретикуло-эндотелиальной системы.

Количество эритроцитов определяется с помощью специальных счетных камер в 1 Мм3 крови.

Количество эритроцитов в крови изменяется в зависимости от вре­мени суток, условий работы, возраста, пола, физиологического состоя­ния организма, а также при заболеваниях.

Так, например, по данным Лоскутова, у телят в первые дни жизни количество эритроцитов в 1 Мм3 крови в среднем равно 10,5 млн. К 30-му дню жизни теленка оно составляет 7,6 млн. У взрослых животных количество эритроцитов составляет около 6,0 млн. Абсолютное количе­ство эритроцитов в крови бычков выше, чем у телочек. Кастрация выравнивает количество эритроцитов.

Мышечная работа повышает количество эритроцитов. Так, пробег лошадей на 25 Км вызывает увеличение количества эритроцитов более чем на 22%. У лошадей, участвующих в скачках, количество эрит­роцитов увеличивается на 28%. Количество эритроцитов варьирует и у животных различных пород. У лошадей разных пород колебания числа эритроцитов составляют свыше 2 млн.. У овец рома­новской породы больше эритроцитов, чем у овец куйбышевской породы, причем эта разница сглаживается в период ягнения и снова восстанав­ливается ко второму месяцу лактации.

Более высокопродуктивные животные (коровы) имеют более высо­кое содержание эритроцитов и гемоглобина крови, по сравнению с ме­нее продуктивными животными

Безъядерные эритроциты недолговечны. До последнего времени считалось, что они живут в крови около 30 дней. Однако с помощью гликогена, обогащенного тяжелым изотопом, в настоящее время уста­новлено, что эритроциты могут прожить до 130 дней.

Состарившиеся эритроциты захватываются клетками ретикуло-эндотелиальной системы и там разрушаются. Уничтожение распавшихся клеток происходит главным образом в селезенке, печени и костном мозгу. Новые эритроциты непрерывно образуются в красном костном мозгу. В результате общее количество эритроцитов в крови в нормаль­ных условиях не меняется.

Скорость оседания эритроцитов. Если кровь предохранить от свертывания и оставить на некоторое время в сосуде, то с течением времени эритроциты оседают. Оказалось,: что скорость оседания эритроцитов неодинакова у различных видов животных при различном состоянии здо­ровья животного. Процесс оседания эритроцитов особенно ускоряется при различных воспалительных процессах в организме. Вот почему оп­ределение скорости или реакции оседания эритроцитов (РОЭ) приобре­ло в клинической практике диагностическое значение.

У лошадей оседание эритроцитов происходит очень быстро, у жвач­ных, наоборот, эта реакция протекает крайне медленно.

Скорость оседания зависит от того, как быстро эритроциты скле­иваются между собой; ведь. ясно, что склеившиеся в комочек эритро­циты будут осаждаться быстрее, чем одиночные. Склеивание или аг­глютинация эритроцитов, зависит от изменения отрицательного элек­трического заряда эритроцитов на положительный.

Скорость оседания эритроцитов, по-видимому, зависит не от свойств самих эритроцитов, а от свойств плазмы. Это иллюстрируется следу­ющим опытом. Если поместить эритроциты одного мужчины в плазму другого мужчины, то скорость оседания эритроцитов составит 8 Мм в час. Эти же эритроциты в плазме беременной женщины оседают со ско­ростью 54 Мм. Эритроциты беременной женщины оседают в ее соб­ственной плазме со скоростью 45 Мм, а в плазме мужчины -- со скоро­стью 9 Мм.

Ускорение оседания эритроцитов связывают с увеличением в крови глобулинов и объясняют это следующим образом. Эритроциты на по­верхности имеют отрицательный электрический заряд, а поэтому, как тела с одинаковым зарядом, отталкиваются друг от друга и остаются в плазме во взвешенном состоянии. Фибриноген и глобулины плазмы электрически положительны, и увеличение в плазме количества глобу­линов приводит к тому, что они адсорбируются на поверхности эрит­роцитов, вытесняя альбумины, и нейтрализуют часть отрицательных ионов. Теряя электрическую заряженность, эритроциты агглютинируют и оседают.

На скорость оседания эритроцитов оказывают влияние величина, форма и количество самих красных кровяных клеток, насыщенность их гемоглобином. Сдвиг реакции крови в кислую сторону замедляет ско­рость оседания эритроцитов. Ускорение реакции оседания обусловлено и увеличением количества холестерина в крови.

(Морфология форменных элементов крови

На долю форменных элементов крови приходится в среднем от 10,0 до 30,0% всей массы крови рыб и от 30,0 до 50,0% - у птиц и млекопитающих. Отношение объема форменных элементов и плазмы определяют с помощью гематокрита.

Эритроциты составляют основную массу форменных элементов крови. Наименьшее количество эритроцитов в 1 мкл содержится в крови круглоротых и рыб (около 0,15 млн.), несколько больше (3-4 млн.) - в крови птиц, и максимально - в крови млекопитающих (7,5 млн. и более)(табл.1).

Между количеством эритроцитов в единице объема крови и их объемом имеется обратно пропорциональная зависимость: эритроциты млекопитающих - самые маленькие (ок. 60-95 фл), а эритроциты хвостатых амфибий - самые крупные (10000 - 14000 фл).

По форме эритроцит представляет собой двояковогнутый диск, средний диаметр которого у млекопитающих 7,5 мкм, а толщина -2 мкм.

Эритроциты содержат до 95% по сухой массе гемоглобина и благодаря этому осуществляют дыхательную функцию крови. Сродство гемоглобина к кислороду регулируется 2,3-дифосфоглицератом, находящимся в значительных количествах в эритроцитах.

Установлено, что менее 3% молекул гемоглобина расположено на поверхности эритроцитов, и с точки зрения оптимальных условий для контакта с кислородом остальной гемоглобин находится в невыгодных условиях. Однако молекулы гемоглобина в толще эритроцитов расположены в определенном порядке и обладают свободным вращательным движением, способствующим активному, транспорту кислорода.

Использование методов разделения веществ позволило установить, что гемоглобин многих животных (лошадь, буйвол, коза, овца) имеет гетерогенную природу; гемоглобин коровы, свиньи, ламы, верблюда, кролика - гомогенен. Отмечены значительные различия и в способности гемоглобина полностью оксигенироваться, т.е. превращаться в оксигемоглобин. Так, гемоглобин оксигенируется на 50% у лошади при 26 мм ртутного столба, у ламы - при 22 мм, северного оленя - 35 мм, скумбрии - 17 мм, щуки - 2,5 мм, личинки комара Хирономуса - 0,5 мм, а лошадиного овода - при 0,02 мм рт. ст. Эти различия в величине сродства гемоглобина к кислороду у разных животных отражают несхожесть экологических условий, к которым надо приспосабливаться организмам в борьбе за существование.

Молекула гемоглобина транспортирует около 20% выделяемого организмом объема углекислоты, остальное количество переносится в виде физически растворенной (10%) и химически связанной, преимущественно в виде бикарбоната натрия (70%) форме плазмой крови.



В эритроцитах и на их поверхности могут присутствовать различные антигенные факторы (например, агглютиногены), которые обусловливают разнообразные иммунологические особенности крови.

В фиксированных и окрашенных обычными гематологическими красителями мазках крови эритроциты выглядят в виде круглых клеток розового или серовато-розового цвета с просветлением в центре за, счет двояковогнутой формы. Окраска эритроцитов кислыми красителями связана с присутствием гемоглобина, следовательно ее интенсивность может служить показателем насыщенности эритроцитов гемоглобином.

Лейкоциты, или белые (бесцветные) клетки, в периферической крови в норме циркулируют в виде зрелых зернистых форм, а также лимфоцитов и моноцитов. Зернистые лейкоциты в зависимости от характера грануляции в цитоплазме делятся на нейтрофильные, базофиль-ные и эозинофильные гранулоциты.

Нейтрофилы являются высокоспециализированными клетками с выраженной защитной функцией. Это связано с фагоцитарной и двигательной активностью нейтрофилов, способностью вырабатывать бактерицидные (лизоцим) и анитоксические факторы, пирогенные факторы. Эти клетки способны выделять биологически активные вещества (катепсины и др.), изменяющие проницаемость сосудов, способны переносить антитела, усиливать пролиферацию гранулоцитов костного мозга. Специфическая активность нейтрофилов обеспечивается многочисленными ферментными системами: в митохондриях при участии ферментов цикла Кребса осуществляется синтез АТФ, в специальных гранулах локализуются пероксидаза и цитохромоксидаза, в лизосомах - кислая и щелочная фосфатаза, неспецифические эстеразы, аминопептидаза, ?-глю-куронидаза, арисульфатаза и др.

В состав специфической зернистости входят лизоцим, различные аминокислоты, липиды, гликоген. Гликоген является важнейшим энергетическим веществом, обеспечивающим анаэробный гликолиз и жизнедеятельность нейтрофилов в неблагоприятных условиях.

Диаметр зрелых нейтрофилов 10-15 мкм; большую часть клетки занимает цитоплазма, содержащая специфическую зернистость. Ядро у сегментоядерных нейтрофилов представлено 2-4 сегментами, соединенными тонкими нитями хроматина; у палочкоядерных - С- или S - образной формы.

В гематологических препаратах цитоплазма нейтрофилов розовато-серого цвета, содержит мелкую бледно-фиолетовую зернистость, равномерно распределенную по всей цитоплазме. Ядро - темно-фиолетового цвета; у сегментоядерных иногда при окраске не выявляются межсегментные перемычки и создается впечатление, что в клетке несколько мелких ядер. В некоторых случаях, когда сегменты плотно прилегают друг к другу, возникают трудности в дифференцировке сегментоядерных от палочкоядерных нейтрофилов: работа с микровинтом микроскопа позволяет идентифицировать их.

Базофилы принимают участив в аллергических реакциях, процессах гемокоагуляции и многие функциональные и метаболические особенности базофилов неясны, поскольку исследования этих малочисленных гранулоцитов крайне ограничены. Известно, что базофилы способны вырабатывать гистамин, в их гранулах обнаружены скопления гепарина, а также содержатся липопротеиды, пероксидаза, гиалуроновая кислота, аминокислоты, кислая фосфатаза, арилсульфатаза, дегидрогеназы.

По размеру базофилы чуть меньше (8-10 мкм) нейтрофилов. В окрашенных препаратах цитоплазма, бледно-розового цвета, содержит темно-фиолетовые гранулы разной величины. Гранулы хорошо выявляются при окраске мазков по Паппенгейму; при использовании других красителей они легко растворяются в воде и выглядят бледно-фиолетовыми, размытыми структурами.

Ядро клетки большое, окрашено в темный цвет, не имеет строго определенной формы, иногда напоминает лист растения.

Эозинофилы участвуют в аллергических реакциях, обладают фагоцитарной и двигательной активностью, но в меньшей степени, чем нейтрофилы. Эозинофилы способны сорбировать на своей поверхности антитела, различные токсические вещества, даже инактивировать их, благодаря чему участвуют в иммунологических и антитоксических свойствах крови.

В эозинофилах обнаружено высокое содержание пероксидазы, арисульфатазы, катерсинов, цитохромоксидазы, сукциндегидрогеназы, аминокислот, фосфолипидов и других веществ, главным образом сосредоточенных в специфических гранулах. Участие эозинофилов в аллергических реакциях объясняется содержанием в них гистаминосвобождающих и ингибирующих освобождение гистамина из тучных клеток особых субстанций.

Обладая размером в 12-15 мкм, эозинофилы имеют весьма характерную структуру. В окрашенных препаратах они отличаются обильной, крупной розовой зернистостью, заполняющей всю цитоплазму клетки. В отдельных клетках выявляются гранулы светло-фиолетового цвета. Ядро чаще расположено эксцентрично и имеет две-три доли. По сравнению с сегментным ядром нейтрофилов, ядро эозинофилов окрашено менее интенсивно и больших размеров.

Лимфоциты представляют центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и выполняют функцию иммунного надзора в организме, обеспечивай защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Эту задачу лимфоциты выполняют благодаря наличию на оболочке специальных участков - рецепторов, активирующихся при контакте с чужеродным антигеном.

Лимфоциты синтезируют защитные антитела, лизируют чужеродные клетки, обеспечивают уничтожение собственных мутантных клеток, осуществляют иммунную память, участвуют в реакции отторжения трансплантата.

Выполнение перечисленных функций осуществляется специализированными формами лимфоцитов. В настоящее время различают три группы лимфоцитов: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсазависимые) и нулевые.

Т-лимфоциты образуются в костном мозге из клеток-предшественников, проходят стадию дифференцировки в вилочковой железе (тимус) а затем попадают в кровь, лимфатические узлы, селезенку.

Среди Т-лимфоцитов существует специализация. Различают клетки-хелперы (помощники), способствующие превращению В-лимфоцитов в плазматические клетки; клетки-супрессоры (угнетатели), контролирующие соотношение различных форм лимфоцитов и блокирующие чрезмерные реакции В-лимфоцитов; клетки-киллеры (убийцы), непосредственных пластинок, продолжительность жизни которых 8-12 суток.

Тромбоциты выполняют ряд важнейших функций. Одна из них участие в процессе гемостаза. В тромбоцитах помимо многочисленных ферментов и биологически активных соединений, присутствуют вещества, называемые тромбоцитарными факторами, участвующие в свертывании крови. В настоящее время известно более 11 факторов, регулирующие процессы адгезии (прилипание к поверхности) тромбоцитов, их агрегации (склеивание), связывание гепарина, уплотнение кровяного сгустка, сужение сосудов и пр.

Кроме участия в гемостазе, тромбоциты выполняют функцию транспорта креаторных веществ, важных для сохранения структуры сосудистой стенки. Они поглощаются клетками эндотелия, доставляя им находящиеся в тромбоцитах макромолекулы. На эти цели ежедневно расходуется до 15% циркулирующих в крови тромбоцитов. При нарушении указанного процесса эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Помимо этого, тромбоциты способны фиксировать антитела и выполняют фагоцитарную функцию. Доказаны и иммуногенные свойства тромбоцитов.

В мазках крови, окрашенных обычными красителями, тромбоциты выглядят как мелкие круглые или овальные образования. Их структура представлена гомогенной периферической зоной (гиаломер), окрашенной в сероватые или голубоватые цвета, и центральной - зернистой (грануломер) зоной, окрашенной в светло-фиолетовый цвет.)

I (sanguis) жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему.

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеточных (форменных) элементов. Нерастворимые жировые частицы клеточного происхождения, присутствующие в плазме, называют гемокониями (кровяная пыль). Объем К. в норме составляет в среднем у мужчин 5200 мл, у женщин 3900 мл.

Различают красные и белые кровяные тельца (клетки). В норме красных кровяных телец (эритроцитов) у мужчин 4-5․1012/л, у женщин 3,9-4,7․1012/л, белых кровяных телец (лейкоцитов) - 4-9․109/л крови. Кроме того, в 1 мкл крови содержится 180-320․109/л тромбоцитов (кровяных пластинок). В норме объем клеток составляет 35-45% объема крови.

Физико-химические свойства. Плотность цельной К. зависит от содержания в ней эритроцитов, белков и липидов Цвет К. меняется от алого до темно-красного в зависимости от соотношения форм гемоглобина, а также присутствия его дериватов - метгемоглобина, карбоксигемоглобина и др. Алый цвет артериальной крови связан с присутствием в эритроцитах оксигемоглобина, темно красный цвет венозной крови - с наличием восстановленного гемоглобина. Окраска плазмы обусловлена присутствием в ней красных и желтых пигментов, главным образом каротиноидов и билирубина; содержание в плазме большого количества билирубина при ряде патологических состояний придает ей желтый цвет.

Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические вещества плазмы - растворенными веществами, а белки и их комплексы - коллоидным компонентом. На поверхности клеток К. имеется двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счет двойною электрического слоя возникает электрокинетический потенциал (дзета-потенциал), предотвращающий агрегацию (склеивание) клеток и играющий, т.о., важную роль в их стабилизации.

Поверхностный ионный заряд мембран клеток крови непосредственно связан с физико-химическими превращениями, происходящими на клеточных мембранах. Определить клеточный заряд мембран можно с помощью электрофореза. Электрофоретическая подвижность прямо пропорциональна величине заряда клетки. Наибольшей электрофоретической подвижностью обладают эритроциты, наименьшей - лимфоциты.

Проявлением микрогетерогенности К. является феномен оседания эритроцитов (см. Гемограмма). Склеивание (агглютинация) эритроцитов и связанное с ним оседание во многом зависят от состава среди, в которой они взвешены.

Электропроводность крови, т.е. ее способность проводить электрический ток, зависит от содержания электролитов в плазме и величины гематокритного числа. Электропроводность цельной К. на 70% определяется присутствующими в плазме солями (главным образом хлоридом натрия), на 25% белками плазмы и лишь на 5% клетками крови. Измерение электропроводности крови используют в клинической практике, в частности при определении СОЭ.

Ионная сила раствора - величина, характеризующая взаимодействие растворенных в нем ионов, что сказывается на коэффициентах активности, электропроводности и других свойствах растворов электролитов; для плазмы К. человека эта величина равна 0,145. Концентрация водородных ионов плазмы выражается в величинах водородного показателя (Водородный показатель). Средний рН крови 7,4. В норме рН артериальной крови 7,35-7,47, венозной крови на 0,02 ниже, содержимое эритроцитов обычно имеет на 0,1-0,2 более кислую реакцию, чем плазма. Поддержание постоянства концентрации водородных ионов в К. обеспечивается многочисленными физико-химическими, биохимическими и физиологическими механизмами, среди которых важную роль играют буферные системы крови. Их свойства зависят от присутствия солей слабых кислот, главным образом угольной, а также гемоглобина (он диссоциирует как слабая кислота), низкомолекулярных органических кислот и фосфорной кислоты (см. Буферные растворы). Сдвиг концентрации водородных ионов в кислую сторону называется Ацидозом, в щелочную - Алкалозом. Для поддержания постоянства рН плазмы наибольшее значение имеет бикарбонатная буферная система (см. Кислотно-щелочное равновесие). Т.к. буферные свойства плазмы почти целиком зависят от содержания в ней бикарбоната, а в эритроцитах большую роль играет также гемоглобин, то буферные свойства цельной К. в большой степени обусловлены содержанием в ней гемоглобина. Гемоглобин, как и подавляющее большинство белков К., при физиологических значениях рН диссоциирует как слабая кислота, при переходе в оксигемоглобин он превращается в значительно более сильную кислоту, что способствует вытеснению угольной кислоты из К. и переходу ее в альвеолярный воздух.

Осмотическое давление плазмы К. определяется ее осмотической концентрацией, т.е. суммой всех частиц - молекул, ионов, коллоидных частиц, находящихся в единице объема. Эта величина поддерживается физиологическими механизмами с большим постоянством и при температуре тела 37° составляет 7,8 мН/м2 (≈ 7,6 атм). Она в основном зависит от содержания в К. хлористого натрия и других низкомолекулярных веществ, а также белков, главным образом альбуминов, неспособных легко проникать через эндотелий капилляров. Эту часть осмотического давления называют коллоидно-осмотическим, или онкотическим. Оно играет важную роль в движении жидкости между кровью и лимфой, а также в образовании гломерулярного фильтрата.

Одно из важнейших свойств К. - вязкость составляет предмет изучения биореологии. Вязкость К. зависит от содержания белков и форменных элементов, главным образом эритроцитов, от калибра кровеносных сосудов. Измеряемая на капиллярных вискозиметрах (с диаметром капилляра несколько десятых миллиметра), вязкость крови в 4-5 раз выше вязкости воды. Величина, обратная вязкости, называется текучестью. При патологических состояниях текучесть К. существенно изменяется вследствие действия определенных факторов свертывающей системы крови (Свёртывающая система крови).

Морфология и функция форменных элементов крови. К форменным элементам крови относятся эритроциты, лейкоциты, представленные гранулоцитами (нейтрофильными, эозинофильными и базофильными полиморфно-ядерными) и агранулоцитами (лимфоцитами и моноцитами), а также тромбоциты. В крови содержится незначительное количество плазматических и других клеток. На мембранах клеток К. происходят ферментативные процессы и осуществляются иммунные реакции. Мембраны клеток К. несут информацию о группах К. в тканевых антигенах.

Эритроциты (около 85%) являются безъядерными двояковогнутыми клетками с ровной поверхностью (дискоцитами), диаметром 7-8 мкм (рис. 1). Объем клетки 90 мкм3 площадь 142 мкм2, наибольшая толщина 2,4 мкм, минимальная - 1 мкм, средний диаметр на высушенных препаратах 7,55 мкм. Сухое вещество эритроцита содержит около 95% гемоглобина, 5% приходится на долю других веществ (негемоглобиновые белки и липиды). Ультраструктура эритроцитов однообразна. При исследовании их с помощью трансмиссионного электронного микроскопа отмечается высокая однородная электронно-оптическая плотность цитоплазмы за счет содержащегося в ней гемоглобина; органеллы отсутствуют. На более ранних стадиях развития эритроцита (ретикулоцита) в цитоплазме можно обнаружить остатки структур клеток-предшественников (митохондрии и др.). Клеточная мембрана эритроцита на всем протяжении одинакова; она имеет сложное строение. Если мембрана эритроцитов нарушается, то клетки принимают сферические формы (стоматоциты, эхиноциты, сфероциты). При исследовании в сканирующем электронном микроскопе (растровая электронная микроскопия) определяют различные формы эритроцитов в зависимости от их поверхностной архитектоники. Трансформация дискоцитов вызывается рядом факторов, как внутриклеточных, так и внеклеточных (рис. 2)

Эритроциты в зависимости от размера называют нормо-, микро- и макроцитами. У здоровых взрослых людей количество нормоцитов составляет в среднем 70%.

Определение размеров эритроцитов (эритроцитометрия) дает представление об эритроцитопоэзе. Для характеристики эритроцитопоэза используют также эритрограмму - результат распределения эритроцитов по какому-либо признаку (например, по диаметру, содержанию гемоглобина), выраженный в процентах и (или) графически.

Зрелые эритроциты не способны к синтезу нуклеиновых кислот и гемоглобина. Для них характерен относительно низкий уровень обмена, что обусловливает длительную продолжительность их жизни (приблизительно 120 дней). Начиная с 60-го дня после попадания эритроцита в кровяное русло постепенно снижается активность ферментов. Это приводит к нарушению гликолиза и, следовательно, к уменьшению потенциала энергетических процессов в эритроците. Изменения внутриклеточного обмена связаны со старением клетки и в итоге приводят к ее разрушению. Большое число эритроцитов (около 200 млрд.) ежедневно подвергается деструктивным изменениям и погибает.

Лейкоциты. Гранулоциты - нейтрофильные (нейтрофилы), эозинофильные (эозинофилы), базофильные (базофилы) полиморфно-ядерные лейкоциты - крупные клетки от 9 до 15 мкм, они циркулируют в К. несколько часов, а затем перемещаются в ткани. В процессы дифференциации гранулоциты проходят стадии метамиелоцитов и палочкоядерных форм. В метамиелоцитах бобовидное ядро имеет нежное строение. В палочкоядерных гранулоцитах хроматин ядра более плотно упакован, ядро вытягивается, иногда в нем намечается образование долек (сегментов). В зрелых (сегментоядерных) гранулоцитах ядро обычно имеет несколько сегментов. Все гранулоциты характеризуются наличием в цитоплазме зернистости, которую подразделяют на азурофильную и специальную. В последней, в свою очередь, различают зрелую и незрелую зернистость.

В нейтрофильных зрелых гранулоцитах количество сегментов бывает от 2 до 5; новообразования гранул в них не происходит. Зернистость нейтрофильных гранулоцитов окрашивается красителями от коричневатого до красновато-фиолетового цвета; цитоплазма - в розовый цвет. Соотношение азурофильных и специльных гранул непостоянно. Относительное число азурофильных гранул достигает 10-20%. Важную роль в жизнедеятельности гранулоцитов играет их поверхностная мембрана. По набору гидролитических ферментов гранулы могут быть идентифицированы как лизосомы с некоторыми специфическими особенностями (наличие фагоцитина и лизоцима). При ультрацитохимическом исследовании показано, что активность кислой фосфатазы в основном связана с азурофильными гранулами, а активность щелочной фосфатазы - со специальными гранулами. С помощью цитохимических реакций в нейтрофильных гранулоцитах обнаружены липиды, полисахариды, пероксидаза и др. Основной функцией нейтрофильных гранулоцитов является защитная реакция по отношению к микроорганизмам (микрофаги). Они активные фагоциты.

Эозинофильные гранулоциты содержат ядро, состоящее из 2, реже 3 сегментов. Цитоплазма слабо базофильна. Эозинофильная зернистость окрашивается кислыми анилиновыми красителями, особенно хорошо эозином (от розового до цвета меди). В эозинофилах выявлены пероксидаза, цитохромоксидаза, сукцинатдегидрогеназа, кислая фосфатаза и др. Эозинофильные гранулоциты обладают дезинтоксикационной функцией. Количество их увеличивается при введении в организм чужеродного белка. Эозинофилия является характерным симптомом при аллергических состояниях. Эозинофилы принимают участие в дезинтеграции белка и удалении белковых продуктов, наряду с другими гранулоцитами способны к фагоцитозу.

Базофильные гранулоциты обладают свойством окрашиваться метахроматически, т.е. в оттенки, отличные от цвета краски. Ядро этих клеток не имеет структурных особенностей. В цитоплазме органеллы развиты слабо, в ней определяются специальные гранулы полигональной формы (диаметром 0,15-1,2 мкм), состоящие из электронно-плотных частиц. Базофилы наряду с эозинофилами участвуют в аллергических реакциях организма. Несомненна их роль и в обмене гепарина.

Для всех гранулоцитов характерна высокая лабильность клеточной поверхности, которая проявляется в адгезивных свойствах, способности к агрегации, образованию псевдоподий, передвижению, фагоцитозу. В гранулоцитах обнаружены кейлоны - вещества, которые оказывают специфическое действие, подавляя синтез ДНК в клетках гранулоцитарного ряда.

В отличие от эритроцитов лейкоциты в функциональном отношении являются полноценными клетками с большим ядром и митохондриями, высоким содержанием нуклеиновых кислот и окислительным фосфорилированием. В них сосредоточен весь гликоген крови, служащий источником энергии при недостатке кислорода, например в очагах воспаления. Основная функция сегментоядерных лейкоцитов - фагоцитоз. Их антимикробная и антивирусная активность связана с выработкой лизоцима и интерферона (Интерфероны).

Лимфоциты - центральное звено в специфических иммунологических реакциях; они являются предшественниками антителообразующих клеток и носителями иммунологической памяти. Основная функция лимфоцитов - выработка иммуноглобулинов (см. Антитела). В зависимости от величины различают малые, средние и большие лимфоциты. В связи с различием иммунологических свойств выделяют лимфоциты тимусзависимые (Т-лимфоциты), ответственные за опосредованный иммунный ответ, и В-лимфоциты, которые являются предшественниками плазматических клеток и ответственны за эффективность гуморального иммунитета.

Большие лимфоциты (рис. 3) имеют обычно круглое или овальное ядро, хроматин конденсируется по краю ядерной мембраны. В цитоплазме находятся одиночные рибосомы. Эндоплазматическая сеть развита слабо. Выявляют 3-5 митохондрий, реже их больше. Пластинчатый комплекс представлен небольшими пузырьками. Определяются электронно-плотные осмиофильные гранулы, окруженные однослойной мембраной. Малые лимфоциты (рис. 4) характеризуются высоким ядерно-цитоплазматическим отношением. Плотно упакованный хроматин образует крупные конгломераты по периферии и в центре ядра, которое бывает овальной или бобовидной формы. Цитоплазматические органеллы локализуются на одном полюсе клетки.

Продолжительность жизни лимфоцита колеблется от 15-27 дней до нескольких месяцев и лет. В химическом составе лимфоцита наиболее выраженными компонентами являются нуклеопротеиды. Лимфоциты содержат также катепсин, нуклеазу, амилазу, липазу, кислую фосфатазу, сукцинатдегидрогеназу, цитохромоксидазу, аргинин, гистидин, гликоген.

Моноциты - наиболее крупные (12-20 мкм) клетки крови. Форма ядра разнообразная, клетка окрашивается в фиолетово-красный цвет; хроматиновая сеть в ядре имеет широко-нитчатое, рыхлое строение (рис. 5). Цитоплазма обладает слабобазофильными свойствами, окрашивается в сине-розовый цвет, имея в разных клетках различные оттенки. В цитоплазме определяется мелкая нежная азурофильная зернистость, диффузно распределенная по всей клетке; окрашивается в красный цвет. Моноциты обладают резко выраженной способностью к окрашиванию, амебоидному движению и фагоцитозу, особенно остатков клеток и мелких чужеродных тел.

Тромбоциты - полиморфные безъядерные образования, окруженные мембраной. В кровяном русле тромбоциты имеют округлую или овальную форму. В зависимости от степени целости различают зрелые формы тромбоцитов, юные, старые, так называемые формы раздражения и дегенеративные формы (последние встречаются у здоровых людей крайне редко). Нормальные (зрелые) тромбоциты - круглой или овальной формы с диаметром 3-4 мкм; составляют 88,2 ± 0,19% всех тромбоцитов. В них различают наружную бледно-голубую зону (гиаломер) и центральную с азурофильной зернистостью - грануломер (рис. 6). При соприкосновении с чужеродной поверхностью волоконца гиаломера, переплетаясь между собой, образуют на периферии тромбоцита отростки различной величины. Юные (незрелые) тромбоциты - несколько больших размеров по сравнению со зрелыми с базофильным содержимым; составляют 4,1 ± 0,13%. Старые тромбоциты - различной формы с узким ободком и обильной грануляцией, содержат много вакуолей; составляют 4,1 ± 0,21%. Процентное соотношение различных форм тромбоцитов отражают в тромбоцитограмме (тромбоцитарной формуле), которая зависит от возраста, функционального состояния кроветворения, наличия патологических процессов в организме. Химический состав тромбоцитов достаточно сложен. Так, в их сухом остатке содержится 0,24% натрия, 0,3% калия, 0,096% кальция, 0,02% магния, 0,0012% меди, 0,0065% железа и 0,00016% марганца. Наличие в тромбоцитах железа и меди позволяет предположить их участие в дыхании. Большая часть кальция тромбоцитов связана с липидами в виде липидно-кальциевого комплекса. Важную роль играет калий; в процессе образования кровяного сгустка он переходит в сыворотку крови, что необходимо для осуществления его ретракции. До 60% сухого веса тромбоцитов составляют белки. Содержание липидов достигает 16-19% от сухого веса. В тромбоцитах выявлены также холинплазмалоген и этанолплазмалоген, играющие определенную роль в ретракции сгустка. Кроме того, в тромбоцитах отмечаются значительные количества β-глюкуронидазы и кислой фосфатазы, а также цитохромоксидазы и дегидрогеназы, полисахариды, гистидин. В тромбоцитах обнаружено соединение, близкое к гликопротеидам, способное ускорять процесс образования кровяного сгустка, и небольшое количество РНК и ДНК, которые локализуются в митохондриях. Хотя в тромбоцитах отсутствуют ядра, в них протекают все основные биохимические процессы, например синтезируется белок, происходит обмен углеводов и жиров. Основная функция тромбоцитов - способствовать остановке кровотечения; они обладают свойством распластываться, агрегировать и сжиматься, обеспечивая тем самым начало образования кровяного сгустка, а после его формирования - ретракцию. В тромбоцитах содержится фибриноген, а также сократительный белок тромбастенин, во многом напоминающий мышечный сократительный белок актомиозин. Они богаты аденилнуклеотидами, гликогеном, серотонином, гистамином. В гранулах содержится III, а на поверхности адсорбированы V, VII, VIII, IX, X, XI и XIII факторы свертывания крови.

Плазматические клетки встречаются в нормальной К., в единичном количестве. Для них характерно значительное развитие структур эргастоплазмы в виде канальцев, мешочков и др. На мембранах эргастоплазмы очень много рибосом, что делает цитоплазму интенсивно-базофильной. Около ядра локализуется светлая зона, в которой обнаруживается клеточный центр и пластинчатый комплекс. Ядро располагается эксцентрично. Плазматические клетки продуцируют иммуноглобулины

Биохимия. Перенос кислорода к тканям К. (эритроциты) осуществляет с помощью специальных белков - переносчиков кислорода. Это содержащие железо или медь хромопротеиды, которые получили название кровяных пигментов. Если переносчик низкомолекулярный, он повышает коллоидно-осмотическое давление, если высокомолекулярный - увеличивает вязкость К., затрудняя ее движение.

Сухой остаток плазмы К. человека около 9%, из них 7% составляют белки, в том числе около 4% приходится на альбумин, поддерживающий коллоидно-осмотическое давление. В эритроцитах плотных веществ значительно больше (35-40%), из них 9/10 приходится на гемоглобин.

Исследование химического состава цельной К. широко используется для диагностики заболеваний и контроля за лечением. Для облегчения интерпретации результатов исследования вещества, входящие в состав К., делят на несколько групп. В первую группу входят вещества (водородные ионы, натрий, калий, глюкоза и др.), имеющие постоянную концентрацию, которая необходима для правильного функционирования клеток. К ним применимо понятие постоянства внутренней среды (гомеостаза). Ко второй группе относятся вещества (гормоны, плазмоспецифические ферменты и др.), продуцируемые специальными видами клеток; изменение их концентрации свидетельствует о повреждении соответствующих органов. Третья группа включает вещества (некоторые из них токсичны), удаляемые из организма лишь специальными системами (мочевина, креатинин, билирубин и др.); накопление их в крови является симптомом повреждения этих систем. Четвертую группу составляют вещества (органоспецифические ферменты), которыми богаты лишь некоторые ткани; появление их в плазме служит признаком разрушения или повреждения клеток этих тканей. В пятую группу входят вещества, в норме продуцируемые в небольших количествах; в плазме они появляются при воспалении, новообразовании, нарушении обмена веществ и др. К шестой группе относятся токсические вещества экзогенного происхождения.

Для облегчения лабораторной диагностики разработано понятие нормы, или нормального состава, К. -диапазон концентраций, не свидетельствующих о заболевании. Однако общепринятые нормальные величины удалось установить лишь для некоторых веществ. Сложность заключается в том, что в большинстве случаев индивидуальные различия значительно превышают колебания концентрации у одного и того же человека в разное время. Индивидуальные различия связаны с возрастом, полом, этнической принадлежностью (распространенностью генетически обусловленных вариантов нормального обмена веществ), географическими и профессиональными особенностями, с употреблением определенной пищи.

В плазме К. содержится более 100 различных белков, из которых около 60 выделено в чистом виде. Подавляющее большинство из них гликопротеиды. Плазматические белки образуются в основном в печени, которая у взрослого человека продуцирует их до 15-20 г в день. Плазматические белки служат для поддержания коллоидно-осмотического давления (и тем самым для удержания воды и электролитов), выполняют транспортные, регуляторные и защитные функции, обеспечивают свертывание крови (гемостаз) и могут служить резервом аминокислот. Различают 5 основных фракций белков крови: альбумины, ․α1-, α2-, β-, γ-глобулины. Альбумины составляют относительно однородную группу, состоящую из альбумина и преальбумина. Больше всего в крови альбумина (около 60% всех белков). При содержании альбумина ниже 3% развиваются отеки. Определенное клиническое значение имеет отношение суммы альбуминов (более растворимых белков) к сумме глобулинов (менее растворимых)- так называемый Альбумин-глобулиновый коэффициент, уменьшение которого служит показателем воспалительного процесса.

Глобулины неоднородны по химической структуре и функциям. В группу α1-глобулинов входят следующие белки: орозомукоид (α1-гликопротеид), α1-антитрипсин, α1-липопротеид и др. К числу α2-глобулинов относятся α2-макроглобулин, гаптоглобулин, церулоплазмин (медьсодержащий белок, обладающий свойствами фермента оксидазы), α2-липопротеид, тироксинсвязывающий глобулин и др. β-Глобулины очень богаты липидами, в них входят также трансферин, гемопексин, стероидсвязывающий β-глобулин, фибриноген и др. γ-Глобулины - белки, ответственные за гуморальные факторы иммунитета, в их составе различают 5 групп иммуноглобулинов: lgA, lgD, lgE, lgM, lgG. В отличие от других белков, они синтезируются в лимфоцитах. Многие из перечисленных белков существуют в нескольких генетически обусловленных вариантах. Их присутствие в К. в одних случаях сопровождается заболеванием, в других - является вариантом нормы. Иногда присутствие нетипичного аномального белка приводит к незначительным нарушениям. Приобретенные заболевания могут сопровождаться накоплением специальных белков - парапротеинов, являющихся иммуноглобулинами, которых у здоровых людей значительно меньше. К ним относятся белок Бенс-Джонса, амилоид, иммуноглобулин класса М, J, А, а также криоглобулин. Среди ферментов плазмы К. обычно выделяют органоспецифические и плазмоспецифические. К первым относят те из них, которые содержатся в органах, а в плазму в значительных количествах попадают лишь при повреждении соответствующих клеток. Зная спектр органоспецифических ферментов в плазме, можно установить, из какого органа происходит данная комбинация ферментов и насколько значительно ею повреждение. К плазмоспецифическим относят ферменты, основная функция которых реализуется непосредственно в кровотоке; их концентрация в плазме всегда выше, чем в каком-либо органе. Функции плазмоспецифических ферментов разнообразны.

В плазме К. циркулируют все аминокислоты, входящие в состав белков, а также некоторые родственные им аминосоединения - таурин, цитруллин и др. Азот, входящий в состав аминогрупп, быстро обменивается путем переаминирования аминокислот, а также включения в состав белков. Общее содержание азота аминокислот плазмы (5-6 ммоль/л) примерно в два раза ниже, чем азота, входящего в состав шлаков. Диагностическое значение имеет в основном увеличение содержания некоторых аминокислот, особенно в детском возрасте, которое свидетельствует о недостаточности ферментов, осуществляющих их метаболизм.

К безазотистым органическим веществам относятся липиды, углеводы и органические кислоты. Липиды плазмы не растворимы в воде, поэтому переносятся К. только в составе липопротеинов (Липопротеины). Это вторая по величине группа веществ, уступающая белкам. Среди них больше всего триглицеридов (нейтральных жиров), затем идут фосфолипиды - главным образом лецитин, а также кефалин, сфингомиелин и лизолецитии. Для выявления и типирования нарушений жирового обмена (гиперлипидемий) большое значение имеет исследование содержания в плазме холестерина и триглицеридов.

Глюкоза К. (иногда ее не совсем правильно идентифицируют с сахаром крови) - основной источник энергии для многих тканей и единственный для головного мозга, клетки которого очень чувствительны к уменьшению ее содержания. Помимо глюкозы в К. присутствуют в небольших количествах другие моносахариды: фруктоза, галактоза, а также фосфорные эфиры сахаров - промежуточные продукты гликолиза.

Органические кислоты плазмы К. (не содержащие азота) представлены продуктами гликолиза (большая часть их фосфорилирована), а также промежуточными веществами цикла трикарбоновых кислот (см. Обмен веществ и энергии). Среди них особое место занимает молочная кислота, которая накапливается в больших количествах, если организм совершает более значительный объем работы, чем получает для этого кислорода (кислородный долг). Накопление органических кислот происходит также при различных видах гипоксии. β-Оксимасляная и ацетоуксусная кислоты, которые вместе с образующимся из них ацетоном относятся к кетоновым телам, в норме вырабатываются в сравнительно небольших количествах как продукты обмена углеводородных остатков некоторых аминокислот. Однако при нарушении углеводного обмена, например при голодании и сахарном диабете, вследствие недостатка щавелевоуксусной кислоты изменяется нормальная утилизация остатков уксусной кислоты в цикле трикарбоновых кислот, и поэтому кетоновые тела могут накапливаться в К. в больших количествах.

Печень человека продуцирует холевую, уродезоксихолевую и хенодезоксихолевую кислоты, которые выделяются с желчью в двенадцатиперстную кишку, где, эмульгируя жиры и активируя ферменты, способствуют пищеварению. В кишечнике под действием микрофлоры из них образуются дезоксихолевая и литохолевая кислоты. Из кишечника желчные кислоты (Жёлчные кислоты) частично всасываются в К., где большая часть их находится в виде парных соединений с таурином или глицином (конъюгированные желчные кислоты).

Все продуцируемые эндокринной системой Гормоны циркулируют в К. Их содержание у одного и того же человека в зависимости от физиологического состояния может очень значительно изменяться. Для них характерны также суточные, сезонные, а у женщин и месячные циклы. В К. всегда присутствуют продукты неполного синтеза, а также распада (катаболизма) гормонов, которые часто обладают биологическим действием, поэтому в клинической практике широкое распространение имеет определение сразу целой группы родственных веществ, например 11-оксикортикостероидов, йодсодержащих органических веществ. Циркулирующие в К. гормоны быстро выводятся из организма; период их полувыведения обычно измеряется минутами, реже часами.

В крови содержатся минеральные вещества и микроэлементы. Натрий составляет 9/10 всех катионов плазмы, концентрация его поддерживается с очень большим постоянством. В составе анионов доминируют хлор и бикарбонат; их содержание менее постоянно, чем катионов, поскольку выделение угольной кислоты через легкие приводит к тому, что венозная кровь бывает богаче бикарбонатом, чем артериальная. В процессе дыхательного цикла хлор перемещается из эритроцитов в плазму и обратно. В то время как все катионы плазмы представлены минеральными веществами, примерно 1/6 часть всех содержащихся в ней анионов приходится на белок и органические кислоты. У человека и почти у всех высших животных электролитный состав эритроцитов резко отличается от состава плазмы: вместо натрия преобладает калий, содержание хлора также значительно меньше.

Железо плазмы К. полностью связано с белком трансферрином, в норме насыщая его на 30-40%. Поскольку одна молекула этого белка связывает два атома Fe3+, образовавшихся при распаде гемоглобина, двухвалентное железо предварительно окисляется до трехвалентного. В плазме содержится кобальт, входящий в состав витамина В12. Цинк находится преимущественно в эритроцитах. Биологическая роль таких микроэлементов, как марганец, хром, молибден, селен, ванадий и никель, полностью не ясна; количество этих микроэлементов в организме человека во многом зависит от содержания их в растительной пище, куда они попадают из почвы или с промышленными отходами, загрязняющими окружающую среду.

В крови могут появиться ртуть, кадмий и свинец. Ртуть и кадмий в плазме К. связаны с сульфгидрильными группами белков, в основном альбумина. Содержание свинца в К. служит показателем загрязненности атмосферы; согласно рекомендациям ВОЗ, оно не должно превышать 40 мкг%, то есть 0,5 мкмоль/л.

Концентрация гемоглобина в К. зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина. Различают гипо-, нормо- и гиперхромную анемию в зависимости от того, сопряжено понижение гемоглобина К. с уменьшением или увеличением его содержания в одном эритроците. Допустимые концентрации гемоглобина, при изменении которых можно судить о развитии анемии, зависят от пола, возраста и физиологического состояния. Большую часть гемоглобина у взрослого человека составляет HbA, в небольших количествах присутствуют также HbA2 и фетальный HbF, который накапливается в К. у новорожденных, а также при ряде заболеваний крови. У некоторых людей генетически обусловлено наличие в К. аномальных гемоглобинов; всего их описано более сотни. Часто (но не всегда) это сопряжено с развитием заболевания (см. Анемии). Небольшая часть гемоглобина существует в виде его дериватов - карбоксигемоглобина (связанного с СО) и метгемоглобина (в нем железо окислено до трехвалентного); при патологических состояниях появляются цианметгемоглобин, сульфгемоглобин и др. В небольших количествах в эритроцитах присутствуют лишенная железа простетическая группа гемоглобина (протопорфирин IX) и промежуточные продукты биосинтеза - копропорфирин, аминолевуленовая кислота и др.

Физиология. Основной функцией К. является перенос различных веществ, в т.ч. тех, с помощью которых организм защищается от воздействия окружающей среды или регулирует функции отдельных органов. В зависимости от характера переносимых веществ различают следующие функции крови.

Дыхательная функция включает транспорт кислорода от легочных альвеол к тканям и углекислоты от тканей к легким. Питательная функция - перенос питательных веществ (глюкозы, аминокислот, жирных кислот, триглицеридов и др.) от органов, где эти вещества образуются или накапливаются, к тканям, в которых они подвергаются дальнейшим превращениям, этот перенос тесно связан с транспортом промежуточных продуктов обмена веществ. Экскреторная функция состоит в переносе конечных продуктов обмена веществ (мочевины, креатинина, мочевой кислоты и др.) в почки и другие органы (например, кожу, желудок) и участии в процессе образования мочи. Гомеостатическая функция - достижение постоянства внутренней среды организма благодаря перемещению К., омыванию ею всех тканей, с межклеточной жидкостью которых ее состав уравновешивается (см. Гомеостаз). Регуляторная функция заключается в переносе гормонов, вырабатываемых железами внутренней секреции, и других биологически активных веществ, с помощью которых осуществляется регуляция функций отдельных клеток тканей, а также удаление этих веществ и их метаболитов после того, как их физиологическая роль выполнена. Терморегуляторная функция реализуется путем изменения величины кровотока в коже, подкожной клетчатке, мышцах и внутренних органах под влиянием изменения температуры окружающей среды (см. Терморегуляция): перемещение К благодаря ее высокой теплопроводности и теплоемкости увеличивает потери тепла организмом, когда существует угроза перегревания, или, наоборот, обеспечивает сохранение тепла при понижении температуры окружающей среды. Защитную функцию выполняют вещества обеспечивающие гуморальную защиту организма от инфекции и попадающих в К. токсинов (например, лизоцим), а также лимфоциты, участвующие в образовании антител. Клеточную защиту осуществляют лейкоциты (нейтрофилы, моноциты), которые переносятся током К. в очаг инфекции, к месту проникновения возбудителя, и совместно с тканевыми макрофагами формируют защитный барьер (см. Иммунитет). Током К. удаляются и обезвреживаются образующиеся при повреждении тканей продукты их деструкции. К защитной функции К. относится также ее способность к свертыванию, образованию тромба и прекращению кровотечения. В этом процессе принимают участие факторы свертывания крови и тромбоциты. При значительном снижении количества тромбоцитов (тромбоцитопении) наблюдается замедленное свертывание крови.

Группы крови. Количество К. в организме - величина довольно постоянная и тщательно регулируемая. В течение всей жизни человека не меняется также его группа крови - иммуногенетические признаки К. позволяющие объединять К. людей в определенные группы по сходству антигенов (см. Группы крови). Принадлежность К. к той или иной группе и наличие нормальных или изоиммунных антител предопределяют биологически благоприятное или, наоборот, неблагоприятное совместимое сочетание К. различных лиц. Это может иметь место при поступлении эритроцитов плода в организм матери во время беременности или при переливании крови. При разных группах К. у матери и плода и при наличии у матери антител к антигенам К. плода у плода или новорожденного развивается гемолитическая болезнь (см. Гемолитическая болезнь плода и новорожденного (Гемолитическая болезнь плода и новорождённого)).

Переливание реципиенту К. не той группы в связи с наличием у него антител к вводимым антигенам донора приводит к несовместимости и повреждению перелитых эритроцитов с тяжелыми последствиями для реципиента (см. Переливание крови). Поэтому основным условием при переливании К. является учет групповой принадлежности и совместимости К. донора и реципиента.

Генетические маркеры К. - свойственные форменным элементам и плазме К. признаки, используемые в генетических исследованиях для типирования индивидов. К генетическим маркерам К. относят групповые факторы эритроцитов, антигены лейкоцитов, ферментные и другие белки. Различают также генетические маркеры клеток К. - эритроцитов (групповые антигены эритроцитов, кислая фосфатаза, глюкозо-6-фосфатдегидрогеназа и др.), лейкоцитов (антигены HLA) и плазмы (иммуноглобулины, гаптоглобин, трансферрин и др.). Изучение генетических маркеров К. оказалось весьма перспективным при разработке таких важных проблем медицинской генетики, молекулярной биологии и иммунологии, как выяснение механизмов мутаций (см. Мутагенез) и генетического кода (см. Ген), молекулярной организации.

Особенности крови у детей. Количество К. у детей изменяется в зависимости от возраста и массы ребенка. У новорожденного на 1 кг массы тела приходится около 140 мл крови, у детей первого года жизни - около 100 мл. Удельный вес К. у детей, особенно раннего детского возраста, выше (1,06-1,08), чем у взрослых (1,053-1,058).

У здоровых детей химический состав К. отличается определенным постоянством и сравнительно мало меняется с возрастом. Между особенностями морфологического состава К. и состоянием внутриклеточного обмена существует тесная связь. Содержание таких ферментов К., как амилаза, каталаза и липаза, у новорожденных понижено, у здоровых детей первого года жизни отмечается повышение их концентраций. Общий белок сыворотки К. после рождения постепенно уменьшается до 3-го месяца жизни и после 6-го месяца достигает уровня подросткового возраста. Характерны выраженная лабильность глобулиновых и альбуминовых фракций и стабилизация белковых фракций после 3-го месяца жизни. Фибриноген в плазме К. обычно составляет около 5% общего белка.

Антигены эритроцитов (А и В) достигают активности только к 10-20 годам, а агглютинабельность эритроцитов новорожденных составляет 1/5 часть агглютинабельности эритроцитов взрослых. Изоантитела (α и β) начинают вырабатываться у ребенка на 2-3-м месяце после рождения, и титры их остаются низкими до года. Изогемагглютинины обнаруживаются у ребенка с 3-6-месячного возраста и только к 5-10 годам достигают уровня взрослого человека.

У детей средние лимфоциты в отличие от малых в 11/2 раза больше эритроцита, цитоплазма их шире, в ней чаще содержится азурофильная зернистость, ядро менее интенсивно окрашивается. Большие лимфоциты почти вдвое больше малых лимфоцитов, ядро их окрашивается в нежные тона, располагается несколько эксцентрично и имеет часто почковидную форму из-за вдавления сбоку. В цитоплазме голубого цвета могут содержаться азурофильная зернистость и иногда вакуоли.

Изменения К. у новорожденных и детей первых месяцев жизни обусловлены наличием красного костного мозга без очагов жирового, большой регенераторной способностью красного костного мозга и при необходимости мобилизацией экстрамедуллярных очагов кроветворения в печени и селезенке.

Снижение у новорожденных содержания протромбина, проакцелерина, проконвертина, фибриногена, а также тромбопластической активности К. способствует изменениям в свертывающей системе и склонности к геморрагическим проявлениям.

Эритроциты (erythros - красный) - высокоспециализированные клетки, приспособленные для выполнения основной функции крови - транспорта кислорода и углекислого газа в организме. В 1 мкл крови у позвоночных содержится несколько миллионов эритроцитов, а у большинства сельскохозяйственных животных от 5 до 10 млн (табл. 1)

Таблица 1. Количество эритроцитов

Продолжительность жизни эритроцитов у лошадей 140-180 дней, у крупного рогатого скота 110-120 дней, у свиней 86-100 дней.

Уменьшение числа эритроцитов - эритроцитоз - обозначают как анемию, длительной интоксикацией, отравление гемолитическими ядами, кровопотери, гемобластозом. Увеличение количества эритроцитов - эритроцитоз-отмечают при диареи, образование транссудата и экссудата, водном голодание.

Количество лейкоцитов

Лейкоциты (от лейко… и греч. kytos - вместилище; здесь - клетка), белые кровяные клетки, бесцветные клетки крови животных и человека. Все лейкоциты принято подразделять на две основные группы, которые осуществляют, как клеточный, так и гуморальный иммунитет. Те лейкоциты, которые призваны осуществлять клеточный иммунитет, как правило, полностью поглощают и в последующем растворяют внутри себя различные чужеродные частицы, среди которых и опасные микроорганизмы (фагоцитоз). Кроме того они обладают способностью уничтожения клеток злокачественной опухоли, чужеродных клеток во время пересадки тканей другого человека, клеток тканей человека, прячущих внутри себя возбудителей инфекции. Лейкоциты, которые осуществляют гуморальный иммунитет, могут вырабатывать антитела, которые способны уничтожить чужеродные частицы (среди них и возбудители инфекции), попавшие в человеческий организм.

Различают незернистые лейкоциты, или агранулоциты, в цитоплазме которых нет постоянных включений, и зернистые лейкоциты, или гранулоциты, имеющие цитоплазматические гранулы (зёрна). К агранулоцитам относят лимфоциты - неоднородную по функциям группу клеток, участвующих в основном в реакциях иммунитета, и моноциты, способные к фагоцитозу крупных инородных частиц (в том числе остатков погибших клеток) и относящиеся к ретикуло-эндотелиальной системе. Агранулоциты , являясь источником веществ, стимулирующих размножение клеток и фагоцитоз, играют важную роль в процессах воспаления, заживления ран, регенерации.

К гранулоцитам относятся эозинофилы с зёрнами, окрашивающимися кислыми красителями, базофилы, зёрна которых окрашиваются основными красителями, содержат гепарин и гистамин, и нейтрофилы, зёрна которых обычно не окрашиваются, богаты гидролитическими ферментами и выполняют функцию лизосом.

Нейтрофилы способны к движению и фагоцитозу мелких инородных частиц (в том числе микробов); выделяя гидролитические ферменты, они могут растворять (лизировать) омертвевшие ткани, например при воспалении, регенерации. Но их функция очистителей организма еще более широка: нейтрофильные лейкоциты уничтожают вирусы, бактерии и продукты их жизнедеятельности - токсины; они проводят дезинтоксикацию организма, т.е. его обеззараживание. Нейтрофилы - способны осуществлять фагоцитоз, как и моноциты.

Эозинофилы - участвуют в воспалительных процессах, аллергических реакциях, очищая организм от чужеродных веществ и бактерий. Эозинофильные лейкоциты содержат в себе антигистаминные вещества, которые проявляются при аллергии.

Базофилы - содержат гистамин и гепарин, спасают организм в случае воспаления и аллергических реакций.

Лимфоциты вырабатывают особый вид белков - антитела, которые обезвреживают попадающие в организм чужеродные вещества и их яды. Некоторые антитела «работают» только против определенных веществ, другие являются более универсальными - они борются с возбудителями не одного, а нескольких заболеваний. Благодаря длительному сохранению антител в организме его общая сопротивляемость повышается. Данный вид лейкоцитов защищает организм от появления опухолей.

Моноциты , они же фагоциты крови (от греческого «фагос» - пожирающий) поглощают возбудителей болезней, инородные частицы, а также их остатки. Моноцитарные лейкоциты способны проникать во все органы.

Количество лейкоцитов и соотношение их разновидностей (лейкоцитарная формула) неодинаковы у животных разных видов - изменяются с возрастом и физиологическим состоянием организма, при болезнях.

Количество тромбоцитов

Тромбоциты - самые мелкие форменные элементы крови. В тромбоцитах содержится более десятка факторов свертывания крови. Они участвуют в защитных реакциях организма. Тромбоциты циркулируют в крови 5-8 суток, затем отмирают в селезенке. У животных разное количество тромбоцитов например: у крупного рогатого ската -260,0-700,0 тысмкл, у лошади -200.0-500,0, у овцы -270,0-500.0.

Уменьшение числа тромбоцитов - тромбоцитопения наблюдается при тяжелых лейкемиях, злокачественных анемиях и некоторых инфекционных заболеваниях (инфекционная анемия лошадей), при отравлении бензолом, лучевой болезни. Характерно понижение свертываемости крови и появление кровоизлияний в кожу и в слизистые оболочки желудочно-кишечного тракта.

Увеличение содержания тромбоцитов - тромбоцитоз - наблюдается при сгущении крови, увеличении количества клеток крови, в период выздоровления при инфекционных заболеваниях. Одновременно нарастает титр антител (что дало повод предположить участие тромбоцитов в выработке антител).

Анализ крови, как правило, является одним из первых проводимых врачом, когда мы посещаем его кабинет из-за беспокоящих нас болезней. Чаще всего он состоит из таких элементов, как общий анализ, СОЭ , исследование уровня глюкозы , исследование ферментов печени, параметров функции почек, а также, в зависимости от проблем, которые побудили нас к посещению врача - другие анализы.

Состав периферической крови

Кровь состоит из морфотических элементов, в просторечии называемых красными клетками крови и плазмы, то есть жидкости, в которой они плавают. Морфология берет свое название именно от морфотических элементов, которые в данном исследовании подвергаются анализу.

Это исследование крови позволяет предварительно оценить состояние нашего здоровья, а в случае обнаружения аномалий - подсказать причину симптомов и сориентировать врача в принятии дальнейших мер в диагностических или лечебных целях.

В состав крови входят эритроциты, белые клетки и тромбоциты. Транспортеры кислорода, то есть эритроциты (красные кровяные тельца), своему цвету обязаны содержащемуся в них гемоглобину - веществу, которое способно связывать и отдавать кислород, транспортируя его по всему организму.

Вторым важным элементом крови являются лейкоциты (белые кровяные тельца). Они служат защите перед бактериями, вирусами, простейшими и т.д. Состоят из нескольких подгрупп - гранулоцитов , лимфоцитов и моноцитов.

Третьей важной группой являются тромбоциты - специализированные клетки, которые способны в нужный момент соединяться и образовывать сгусток, предотвращающий вытекание крови из поврежденного сосуда.

Ниже приводятся объяснения основных комбинаций, указываемых в традиционном результате исследования крови, наряду с нормами для взрослых, отдельно для женщин и для мужчин.

Венозная кровь (такая, на которой проводят морфологическое исследование) обычно берется из вены, расположенной на локтевом сгибе. У маленьких детей может быть использована кровь из пальца. Когда для исследования нужна артериальная кровь (например, в случае газометрии), её берут из бедренной артерии, а иногда из мочки уха.

Неправильные результаты морфологии

Общий анализ крови выполняется автоматом, который подсчитывает морфотические элементы крови, определяя их параметры, такие как размер или объем. Часто, вместе с автоматическим исследованием, врач поручает выполнение, так называемого, ручного мазка крови . Он заключается в оценке под микроскопом образцы крови для определения количества и вида белых кровяных клеток.

Белые кровяные тельца, иначе лейкоциты (WBC) - рост их числа может быть вызван воспалением, инфекцией, опухолью, но встречается также в состоянии полного здоровья, беременности, после физических нагрузок или когда повышается температура окружающей среды. Слишком маленькое количество лейкоцитов может свидетельствовать о недостатке иммунитета, инфекции, раке.

Красные кровяные тельца, иначе эритроциты (RBC) - очень большое увеличение их числа встречается в ходе редкой болезни - истинной полицитемии, но чаще возникает вследствие хронической гипоксии тканей организма (например, при заболеваниях сердца или легких).

Снижение количества эритроцитов происходит вследствие кровотечения, дефицита железа , дефицита витамина B12 или фолиевой кислоты, разрушения красных кровяных клеток, вызванного инфекционными факторами или врожденными заболеваниями. Снижение количества эритроцитов может свидетельствовать о заболевании почек или раке. Встречается также в период беременности.

Гемоглобин (HGB) - присутствует в крови в красных клетках крови, поэтому, как правило, неправильная его концентрация сопровождает количественные или качественные нарушения эритроцитов. Когда концентрация гемоглобина ниже, чем должно быть, речь идет об анемии , то есть малокровия. Она может быть вызвана потерей крови, распадом эритроцитов, дефицитом железа, фолиевой кислоты, витамина B12 и всеми другими факторами, влияющими на красные кровяные тельца.

Средний объем эритроцитов (MCV) - этот параметр имеет значение в поисках причины анемии. При потере крови или дефиците железа в организме MCV снижается, когда причиной анемии является дефицит витамина В12 или фолиевой кислоты происходит рост MCV выше допустимых.

Тромбоциты - увеличение их количества происходит после физической нагрузки, беременности, а также в ходе хронических воспалительных заболеваний и некоторых видов рака. Слишком низкое количество тромбоцитов может быть вызвано, например, приёмом определенных лекарственных препаратов, дефицитом витаминов, инфекциями и опухолями.

Имейте в виду, что каждый результат анализа в лаборатории, а также морфологии, связан с риском ошибки, вызванной ошибкой сотрудника лаборатории или камеры, выполняющей измерения. В случаях, когда обнаруживается большое отклонение от нормы, исследование часто повторяется, чтобы устранить риск ошибки.

Если речь идет об интерпретации полученных результатов, лучше всего проконсультироваться с врачом. Не всегда результат выходящий за пределы нормы свидетельствует о болезни, как и не всегда правильный результат является доказательством полного здоровья.

Другие исследования крови

Кроме морфологию периферической крови каждый из нас хотя бы раз в жизни имел или будет выполнять другие исследования. Многие из них, осуществляемые регулярно, позволяют обнаружить грозные заболевания, такие как сахарный диабет , ишемическая болезнь сердца , хроническая болезнь почек.

В крови могут исследовать:

  • уровень глюкозы - позволяет обнаружить сахарный диабет;
  • холестерин и триглицериды - говорят, в частности, о степени угрозы развития атеросклероза;
  • концентрация креатинина в крови - осуществляется, прежде всего, с целью оценки функции почек;
  • ферменты печени ;
  • ТТГ и гормоны щитовидной железы .

Очень часто исследуются показатели воспаления, особенно скорость оседания эритроцитов. У женщин она не должна превышать 12, а у мужчин - 8 мм/час. Повышенные значения СОЭ могут свидетельствовать об инфекции, раке, обострении некоторых хронических заболеваний.

Газометрическое исследование позволяет оценить уровень углекислого газа и кислорода в крови. Кроме того, могут быть исследованы электролиты (такие как натрий, калий, магний, кальций), гормоны, антитела, маркеры опухоли (белки, концентрация которых в крови повышается при онкологических заболеваниях). Эти анализы, обычно, выполняются только по направлению врача.

Большинство исследований крови должно выполняться на пустой желудок, минимум через 8 часов после последнего приема пищи.

Успех борьбы с заболеваниями животных зависит от своевременного проведения профилактических мероприятий, а в случаях появления заболевания - от диагностики и терапии их.
Среди методов, дающих возможность объективной оценки интерьерных качеств животных и оценки состояния здоровья и течения патологического процесса в организме, видное место отводится исследованию крови.
Ещё в недалёком прошлом исследованиями крови, главным образом, при кровепаразитарных заболеваниях, занимался узкий круг специалистов. Причинами недостаточного использования гематологических исследований в ветеринарной и зоотехнической практике были, с одной стороны, недостаточная разработка методов исследования крови применительно к животным, с другой - отсутствие данных по составу крови у разных видов животных и взаимосвязи между составом крови и интерьерными качествами животных и состоянием течения патологического процесса в организме.
За последние тридцать лет исследователи оставили далеко позади период исканий взаимосвязи между составом крови и состоянием организма; накопленный материал в учении о крови позволяет шире использовать эти данные в практике животноводства.
Совершенно очевидно, что изменения функций органов и систем организма будут сказываться на составе крови, состав же крови, в свою очередь, будет оказывать влияние на деятельность органов животного.
Поэтому исследования крови открывают широкие перспективы к пониманию патологического процесса и его контролю. Изменения крови могут лечь в основу для постановки диагноза и прогноза.
Не менее важное значение исследования крови приобретают и в зоотехнической практике при определении интерьерных качеств животных.
Таким образом, исследования крови открывают широкие перспективы для ветеринарных и зоотехнических кадров, с одной стороны, для установления патологии организма, с другой - для определения его качественных особенностей.
К настоящему времени в отечественной литературе имеется большое количество работ, посвящённых исследованию крови животных и птиц, как в норме, так и при различных заболеваниях.
Кровь - разновидность соединительной ткани, составляющая вместе с лимфой и тканевой жидкостью внутреннюю среду организма. Кровь и органы, в которых происходит образование и разрушение кровяных телец (костный мозг, печень, отчасти лимфоидные органы), объединяют в единую систему крови, деятельность которой регулируется нейро-гуморальными механизмами.
Кровь представляет собой вязкую непрозрачную жидкость солоноватого вкуса и своеобразного запаха. В артериях кровь ярко-красная (насыщенная кислородом), в венах - вишневого цвета. Красный цвет крови у позвоночных является своеобразным биологическим приспособлением, обеспечивая поглощение фиолетовой и ультрафиолетовой части солнечного спектра, химически наиболее активной. Относительная плотность (удельный вес) цельной крови 1,050-1,060, относительная вязкость (в сравнении с водой) 4,5-5,0, pH 7,3-7,4.
Форменные элементы имеют большую плотность, чем плазма и поэтому кровь, предохраненная от свертывания, при отстаивании или центрифугировании разделяется на два слоя: осевшие форменные элементы (35-42% по объему) и плазму (58-65%).
Плазма - полупрозрачная жидкость желтоватого цвета с вязкостью 1,7-2,2, относительной плотностью 1,030-1,035. Плазма образуется в результате удаления из крови форменных элементов. Содержит в среднем 91% воды и 9% сухих веществ, в том числе 8% органических (белки, азотистые небелковые вещества, глюкозу, липиды, витамины и др.). Неорганические вещества представлены минеральными солями. Несмотря на непрерывное поступление в кровь и выведение из нее различных веществ, химический состав плазмы достаточно постоянный. Все случайные колебания в составе плазмы в здоровом организме быстро выравниваются.
Поддерживая относительное постоянство своего состава, кровь осуществляет стабилизацию (гомеостаз) внутренней среды, что необходимо для нормальной жизнедеятельности клеток и тканей. Наряду с нервной системой кровь обеспечивает функциональное единство всех частей и осуществляет взаимосвязь различных анатомических структур организма.
Сохраняя постоянство состава, кровь, тем не менее, является достаточно лабильной системой, быстро отражающей происходящие в организме изменения как в норме, так и в патологии. Поэтому в практической ветеринарии и зоотехнии широко используют гематологические анализы.
Морфологические, биохимические и иммунные свойства крови являются результатом длительной биологической эволюции. Она представляет собой стройную и относительно устойчивую физико-химическую организацию. Омывая все клетки организма, кровь дает возможность им потреблять кислород, питательные вещества и защищаться от патогенных микроорганизмов. Кроме того, кровь от клеток переносит продукты метаболизма, освобождая их от всевозможных шлаков и вредных веществ. Поэтому в крови, как в зеркале, отражаются все изменения, происходящие в организме.
С давних пор, используя каплю крови как незаменимый источник информации, ученые получали сведения о процессах, протекающих в организме, значительно полнее, чем при других методах исследования. Следовательно, по изменению состава крови можно судить о межуточном обмене организма, его защитных реакциях и о многих других показателях, жизненно важных для животных.
При анализе данных гематологических исследований необходимо знать состав и свойства крови в норме с учетом физиологического состояния животных, условия кормления, содержания, породы в зональном разрезе. Для правильного суждения о качественном изменении крови необходимо обращать внимание на совокупность изменений красной и белой крови.
При относительно нормальном физиологическом состоянии организма животных состав и свойства периферической крови более или менее постоянны. Однако даже незначительные изменения в функционировании органов и систем организма неизбежно приводят к тем или иным изменениям в периферической крови. Чем больше будет изменен обмен веществ в организме, тем сильнее и глубже будут изменения в крови.
При изучении белой крови обращают внимание на количество лейкоцитов и их качество. В лейкограмме нередко обнаруживаются такие изменения, которые возникают задолго до появления клинических признаков заболевания и указывают на серьезные сдвиги в течение развития патологического процесса в организме.
Кровь, циркулирующая по кровеносным сосудам вместе с лимфой и межтканевой жидкостью, составляет внутреннюю среду организма человека и животных. Через кровь осуществляются следующие функции:
1. Кровь принимает участие в процессах обмена веществ. Хотя кровь нигде непосредственно не соприкасается с клетками органов (за исключением костного мозга и селезенки), питательные вещества переходят из нее к клеткам через тканевую (межклеточную, интерстициальную) жидкость, заполняющую межклеточные пространства. Из тканевой жидкости в кровь поступают продукты клеточного метаболизма, основная часть которых переносится кровью к органам выделения.
2. Кровь участвует в дыхательных процессах. Она осуществляет перенос кислорода от легких к тканям и углекислого газа в обратном направлении. В переносе кислорода основную роль выполняет гемоглобин, в переносе углекислого газа - соли, растворенные в плазме крови. Дыхательная функция крови осуществляется путем связывания и переноса кислорода от легких к тканям и углекислого газа от тканей к легким. Этот процесс является важной составной частью функции дыхания.
3. Кровь выполняет функцию теплорегуляции. Имея в своем составе большое количество воды и обладая высокой удельной теплоемкостью, кровь аккумулирует в себе тепло и равномерно распределяет его по органам. При избытке тепла в организме кровь через периферические сосуды (испарением) отдает часть его в окружающую среду.
4. Через кровь осуществляется гуморальная регуляция деятельности органов и систем организма. Гуморальными агентами служат поступающие в кровь гормоны, медиаторы, электролиты, клеточные метаболиты и другие продукты обмена веществ. Эту функцию крови называют также коммуникационной.
5. Кровь выполняет защитную функцию, предохраняя организм от действия микробов, вирусов и их токсинов, а также других чужеродных организму веществ. Эта функция осуществляется за счет бактерицидных свойств плазмы, фагоцитарной активности лейкоцитов, а также за счет деятельности иммунокомпетентных клеток - лимфоцитов, ответственных за тканевый и клеточный иммунитет животных. Повышение сопротивляемости инфекциям достигается благодаря уничтожению болезнетворных микроорганизмов клеточными элементами крови, образованию в организме особых веществ - антител, обладающих противобактерийными свойствами, и антитоксинов, которые противодействуют ядовитым веществам, выделяемым бактериями. В результате создается невосприимчивость организма к вредно действующим факторам среды (иммунитет).
К форменным элементам крови относятся эритроциты, лейкоциты, тромбоциты. Содержание их в единице объема крови относительно постоянно для данного вида животных, хотя и подвержено влиянию возраста, зависит от физиологического состояния, условий окружающей среды. Содержание форменных элементов может резко меняться при патологических состояниях организма.
Эритроциты. Основную массу форменных элементов крови составляют красные кровяные тельца - эритроциты, которые являются количественно преобладающей клеточной формой нормальной крови позвоночных животных. Обычно количество их в 1 мм3 крови исчисляется миллионами. Это специализированные безъядерные (у млекопитающих) клетки диаметром 7-9 мкм, имеющие форму двояковогнутого диска или ядерные (у птицы), имеющие форму двояковыпуклого диска. Эритроциты при полном отсутствии амебовидного движения отличаются мягкостью, гибкостью и эластичностью. Благодаря специфической форме, пористой поверхности, способности к обратимой деформации при прохождении через узкие капилляры (пластичности) эритроциты сильно вытягиваются в длину, но как только входят в широкое русло, снова мгновенно превращаются в диски. Эритроциты хорошо приспособлены к выполнению своей основной функции - переносу дыхательных газов. Эритроциты образуются внутри сосудов в синусах красного костного мозга. Созревшие эритроциты циркулируют в крови 100-120 дней, после чего фагоцитируются клетками ретикулоэндотелиальной системы печени, селезенки и костного мозга. За сутки обновляется в среднем 0,8-1% эритроцитов, однако скорость эритропоэза (образование красных кровяных телец) может резко возрастать при кровопотерях, недостатке кислорода, патологическом укорочении длительности жизни эритроцитов.
Мембрана эритроцитов состоит из белков, липо- и гликопротеидов, толщина ее около 10 нм. Мембрана в миллион раз более проницаема для анионов, чем для катионов. Перенос веществ через мембрану осуществляется как путем диффузии, так и путем связывания молекулами-переносчиками, встроенными в мембрану. Необходимая для этих процессов АТФ образуется в результате гликолиза. Содержание белков в эритроцитах более высокое, а низкомолекулярных веществ (глюкозы, солей и проч.) более низкое, чем в плазме. В целом осмотическое давление в эритроцитах чуть выше, чем в плазме, что обеспечивает их тургор.
В гипотоническом растворе эритроциты поглощают воду, набухают, приобретают сферическую форму и лопаются; гемоглобин выходит в среду. Этот процесс называется осмотическим гемолизом. Гемолиз может наступить и при воздействии химических веществ, растворяющих жиры (эфира, хлороформа, сапонинов, змеиного яда) и нарушающих структуру или целостность мембраны.
В гипертоническом растворе эритроциты, наоборот, теряют воду и сморщиваются. Показателем прочности эритроцитов может быть кривая их осмотической устойчивости, то есть способности противостоять понижению осмотического давления.
В 3-4-месячном возрасте количество эритроцитов у животных и птицы приближается к уровню взрослых особей. Эритроцитов у самцов содержится несколько больше, чем у самок.
Количество эритроцитов меняется в зависимости от сезона года. В весенне-летний период число их возрастает в сравнении с осенне-зимним периодом. Колебания в содержании эритроцитов в крови зависят также от кормления и продуктивности. Наличие в рационе кормов животного происхождения способствует увеличению числа эритроцитов. Разжижение крови после приема большого объема воды птицей несколько снижает количество эритроцитов, и, наоборот, при сгущении крови вследствие недостатка питьевой воды число их увеличивается. Причиной стойкого уменьшения в крови эритроцитов и гемоглобина (при анемиях) может быть недостаток в кормах железа и меди. Анемия возникает и после больших кровопотерь или вследствие разрушения эритроцитов ядами или токсинами. Ослабление функции кроветворения также приводит к анемии.
Гемоглобины. Около 34% общей и 90% сухой массы эритроцита приходится на долю дыхательного пигмента - гемоглобина. Это вещество способно легко связывать и отщеплять кислород, превращаясь соответственно в окисленный и восстановленный гемоглобин. Среднее содержание гемоглобина в крови сельскохозяйственных животных (этот показатель определяют калориметрическим методом после разрушения эритроцитов) составляет 90-100 г в литре крови.
Недостаток гемоглобина является причиной анемии. Под этим термином понимают снижение способности крови переносить кислород. При анемии уменьшается либо число эритроцитов, либо содержание в них гемоглобина (а иногда - и то и другое).
Гемоглобин представляет собой глобулярный белок, полипептидные цепи которого свернуты в компактную глобулу. Такая конформация способствует выполнению гемоглобином его основной функции - связывания и переноса кислорода.
Молекулярная масса гемоглобина - 64500, он содержит четыре полипептидные цепи и четыре простетические группы гема. В геме атом железа находится в закисной форме. Полипептидная α-цепь содержит 141 аминокислотный остаток, β-цепь - 146 остатков. Всю белковую часть молекулы гемоглобина называют также глобином.
Если структура гема в гемоглобине у разных животных одинакова, то глобин (его полипептидные цепи) имеет значительные разнообразия в последовательности и содержании отдельных аминокислот. Вместе с тем установлены 9 консервативных положений в последовательности, где содержатся одни и те же аминокислотные остатки.
При присоединении кислорода к железу гема образуется окисленная форма гемоглобина - оксигемоглобин. Присоединение кислорода к одному гему облегчает его присоединение к другим гемам той же молекулы гемоглобина. Этот эффект, называемый кооперативным, способствует увеличению количества транспортируемого кислорода.
Помимо кислорода, гемоглобин способен связывать также Н+ и СО2.
При патологических изменениях красной крови количество гемоглобина и число эритроцитов во многих случаях изменяются не в одинаковой степени: чаще количество гемоглобина уменьшается резче, чем число эритроцитов; реже наблюдается обратное, то есть, несмотря на резкое падение количества эритроцитов, концентрация гемоглобина изменяется относительно мало. То есть, изменение количества гемоглобина может и не идти параллельно изменению числа эритроцитов, поэтому определение качества эритроцитов по насыщенности их гемоглобином имеет важное клиническое значение, для чего прибегают к определению цветного показателя.
Соотношение между количеством гемоглобина и числом эритроцитов носит название «цветного показателя» или «гемоглобинного индекса»; оно может иметь определённое диагностическое значение и характеризует дыхательную функцию крови.
Колебания цветного показателя у некоторых видов животных иногда бывают в норме чрезмерно широки. Диагностическое значение имеет как определение количества гемоглобина, так и цветного показателя.
Лейкоциты. Количество лейкоцитов в крови исчисляется тысячами, они различаются между собой как морфологически, так и по биологической роли, выполняемой в организме. Основная роль лейкоцитов - участие в защитных и восстановительных процессах. Они способны продуцировать различные антитела, разрушать и удалять токсины белкового происхождения, фагоцитировать микроорганизмы.
Лейкоциты, или белые кровяные тельца - бесцветные клетки, имеющие ядро и протоплазму специфической структуры и не содержащие гемоглобина. Происходят из одной «материнской» стволовой клетки костного мозга, дающей начало элементам моноцитарного, гранулоцитарного и лимфоцитарного ряда. Первые две группы - моноциты и гранулоциты (базофилы, нейтрофилы (у птиц - псевдоэозинофилы) и эозинофилы) - образуются и дифференцируются в костном мозгу, третья группа (лимфоциты) образуется в лимфатических узлах, селезенке и тимусе из первичных стволовых клеток костного мозга и дифференцируются в одном из лимфоидных органов.
Процентное соотношение отдельных форм лейкоцитов называют лейкоцитарной формулой, или лейкограммой. Определение ее имеет большое диагностическое и прогностическое значение. У здоровых животных каждого вида лейкограмма довольно стабильна, ее изменения служат признаком заболевания. То есть, при изучении количества и видового состава лейкоцитов следует учитывать только резко выраженные и стойкие отклонения их от нормы.
Все формы лейкоцитов в той или иной мере обладают способностью к амебоидному движению и могут проникать через стенку кровеносных сосудов. Больше половины лейкоцитов находится за пределами сосудистого русла, в межклеточном пространстве, примерно треть - в костном мозгу.
Лейкоциты способны окружать инородные тела, захватывать их в цитоплазму и переваривать с участием лизосом. Это явление носит название фагоцитоза. В лейкоцитах содержатся соответствующие ферменты - протеазы, пептидазы, липазы, дезоксирибонуклеазы.
Все виды лейкоцитов участвуют в защитных реакциях организма, но каждый вид осуществляет это особым способом.
Нейтрофилы или псевдоэозинофилы (микрофаги) составляют вместе с лимфоцитами основную массу белых кровяных телец. Псевдоозинофилы делятся на клетки с зернистой и палочковидной грануляцией. Гранулы цитоплазмы данных клеток по отношению к красителям нейтральны. Они фагоцитируют бактерии и продукты распада тканей и разрушают их ферментами. Гной состоит главным образом из нейтрофилов и их остатков. Нейтрофилы оказывают также противовирусное действие, вырабатывая особый белок - интерферон.
Следовательно, основная функция нейтрофилов - защита организма от проникающих в него микробов и их токсинов. Нейтрофилы скапливаются в местах повреждения тканей и проникновения микробов. Эти сравнительно большие клетки обладают способностью проходить через стенку эндотелия капилляров и активно двигаться в тканях к месту проникновения микробов. Нейтрофилам присуще амебовидное движение. Причина его -положительный хемотаксис. Контактируя с живыми или мертвыми микробами или частицами микроскопических размеров, нейтрофилы захватывают их и переваривают в цитоплазме. Участие нейтрофилов в реализации ответной реакции организма не ограничивается фагоцитозом. Нейтрофилы могут выделять в кровь вещества, обладающие как бактерицидными, так и антитоксичными свойствами.
Базофилы - синтезируют противосвертывающее вещество -гепарин, а также гистамин, участвующий в воспалительных реакциях по месту внедрения микробов. Предполагается участие базофилов в аллергических реакциях (гиперемия кожи, появление сыпи, спазм бронхов).
Количество базофилов нарастает в крови во время регенеративной (заключительной) фазы острого воспаления и немного увеличивается при хроническом воспалении. Полагают, что гепарин и другие продукты этих клеток препятствуют свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует процессам рассасывания и заживления. Указывается, что половина гистамина, имеющегося в организме, содержится в базофилах. Столь высокое содержание гистамина в базофилах свидетельствует об отношении этих клеточных элементов к течению аллергических реакций немедленного типа. Несомненное участие базофилов в аллергических реакциях немедленного и замедленного типов позволяет считать, что существенное значение в регуляции продукции базофилов принадлежит и механически определяет напряженность иммуногенеза в организме.
Эозинофилы имеют цитоплазму, воспринимающую кислые красители красно-розового цвета. Эозинофилы играют важную роль в разрушении и обезвреживании токсинов белкового происхождения и чужеродных белков. Под влиянием последних число эозинофилов в крови увеличивается. Что же касается основной функции эозинофилов, то в настоящее время можно считать установленным их отношение к течению аллергических реакций, главным образом немедленного типа. Все это позволяет считать, что продукция эозинофилов, так же, как и их перераспределение (поступление в ткани), зависит от иммунологического состояния организма.
Моноциты - крупные клетки (диаметр 12-20 мкм), не содержащие цитоплазматических гранул. Моноциты способны к амебовидному движению и являются активными фагоцитами, захватывающими и переваривающими как микробы, так и обломки разрушенных клеток организма. То есть, обладают хорошо выраженной фагоцитарной и бактерицидной активностью. Фагоцитируют микробы, погибшие лейкоциты, поврежденные клетки тканей, очищая очаг воспаления. Из крови переходят в окружающие ткани, где дозревают, превращаясь в неподвижные клетки - тканевые макрофаги. Эти клетки образуют ограничивающий валик вокруг инородных тел, не разрушаемых ферментами.
При накоплении недоокисленных продуктов в очаге воспаления возникает кислая реакция, отчего нейтрофилы теряют свою активность. Однако макрофагам для оптимальной фагоцитарной активности необходима именно кислая среда, поэтому при развитии воспаления они как бы приходят на смену нейтрофилам. Постоянное наличие макрофагов в местах реализации аллергических реакций замедленного типа свидетельствует об участии моноцитов в процессах клеточного иммунитета.
Лимфоциты составляют значительную (а у жвачных животных, птиц и рыб - преобладающую) часть лейкоцитов. Соотношение их с гранулоцитами меняется в процессе онтогенеза животного. Образуются в лимфатических узлах, глоточных миндалинах -пейеровых бляшках кишечника, слепых отростках, селезенке, тимусе, фабрициевой бурсе (у птиц).
Если все остальные элементы белой крови несут в основном неспецифические защитные механизмы (фагоцитоз, выработка интерферона, лизоцима, пропердина, гистамина и других биологически активных веществ, содержащихся в жидкостях организма), то лимфоциты играют основную роль в специфических защитных реакциях.
Лимфоциты играют важную роль в развитии защитных реакций и сохранении целостности организма. Все чужеродные для организма белки и их носители (микроорганизмы, вирусы, паразиты, клетки чужеродных тканей после трансплантации) немедленно становятся предметом атаки лимфоцитов. Лимфоциты обладают удивительной способностью различать в организме «свое» и «чужое», основанное на антигенных различиях белков собственных тканей организма и чужеродных белков. Указанная способность лимфоцитов осуществляется благодаря наличию в их наружной мембране специфических рецепторов, возбуждающихся при соприкосновении с чужеродными белками. Одни из этих клеток, Т-лимфоциты выделяют при таком контакте лизосомальные ферменты, разрушающие чужеродные белки или клетки - носители этих белков. Поэтому Т-лимфоциты получили название «клетки-убийцы» (киллеры). Другие лимфоциты - В-лимфоциты - возбуждаются при контакте с чужеродными белками и индуцируют цепь межклеточных взаимодействий, приводящих к выработке специфических антител, которые связывают и нейтрализуют чужеродные белки, а также способствуют фагоцитозу бактерий носителей этих белков. Таким образом, лимфоциты не только уничтожают болезнетворные агенты, но и чутко охраняют организм от любых чужеродных тканей и белков.
Кровь птиц по составу лейкоцитов подвержена значительным индивидуальным колебаниям, но средние данные могут в известной степени характеризовать отряд в целом. Преобладающими клетками в крови птиц являются незернистые лейкоциты, то есть кровь птиц имеет ярко выраженный лимфоцитарный профиль.
В период постнатального развития в лейкоцитарной формуле у птиц происходят своеобразные возрастные изменения. У новорожденных цыплят преобладающими клетками в крови являются зернистые лейкоциты, в основном псевдоэозинофилы, количество которых в лейкоцитарной формуле составляет не менее 60%. У 1 - 3-дневных цыплят количество псевдоэозинофилов составляет 50-55%, но в это время появляется большое количество молодых клеток, в частности, миелоцитов. Наибольшей интенсивности гемопоэз достигает к 5-8-м суткам жизни цыплят, К этому времени количество различных стадий эритробластов в периферической крови составляет 10-12%, у 5-дневных цыплят количество зернистых лейкоцитов увеличивается до 60-70%, из них зрелые гранулоциты составляют лишь 32%, а остальную часть составляют молодые клетки миелоциты. Это крупные клетки с эксцентрично расположенным несегментированным или слабо сегментированным ядром с наличием в цитоплазме смешанной базофильной либо нечеткой оксифильной зернистости.
К двухнедельному возрасту количество гранулоцитов у цыплят составляет 50-60%, но миелоцитов среди них содержится всего 1-2%. К концу четвертой недели преобладающими клетками в периферической крови становятся лимфоциты, количество псевдоэозинофильных гранулоцитов резко падает. Если к этому времени изменение количественных соотношений в содержании различных форм гранулированных и негранулированных лейкоцитов заканчивается и белая кровь принимает профиль, характерный для взрослых птиц, то в эритроидных клетках периферической крови происходит активный митотический процесс. Только в трехмесячном возрасте кровь у цыплят принимает состав, характерный для крови взрослых кур.
В крови утят в первые дни жизни количество гранулоцитов также увеличивается, но увеличение это идет не столь резко, как у цыплят. Преобладающими формами являются зрелые клетки, количество миелоцитов значительно меньше, чем у цыплят. К двухнедельному возрасту количество зернистых лейкоцитов уменьшается.
Рассматривая закономерности развития постнатального кроветворения, можно отметить, что кровь птиц в раннем возрасте характеризуется преимущественным содержанием гранулированных лейкоцитов. По всей вероятности, это связано с тем, что лейкопоэз у кур начинается незадолго перед вылуплением и достигает наибольшей интенсивности в последние дни эмбрионального развития.
Белки. Общее содержание белков - 6,8-7,8% объема плазмы. Основные из них: альбумины - 2,9-3,4%, глобулины -3,8-4,3, фибриноген - 0,1%. Фракции альбуминов и глобулинов неоднородны (преальбумин, альбумин; α-, β-, χ-глобулины). Сывороточными белками называют белки плазмы, которые остались после удаления форменных элементов крови и фибриногена Количественное и качественное определение белков плазмы применяется в клинической диагностике (при различных патологиях), а также в научных экспериментах по биохимии, иммуногенетике, питанию и гигиене сельскохозяйственных животных.
К настоящему времени по изучению динамики белков сыворотки крови проведено значительное количество исследований, причем наибольшее внимание уделяется крупному рогатому скоту. Отмечена положительная связь между белковым составом крови коров и уровнем продуктивности, качеством молока.
Альбумины - группа белков, характеризующихся повышенной электрофоретической подвижностью. Среди сывороточных белков они наиболее однородны и на 98 % состоят из аминокислот. Изоэлектрическая точка альбуминов при pH -4,9, молекулярная масса 65000 - 70000, период полураспада 3,7 суток. Они хорошо растворимы в воде. Альбумины, как и другие белки плазмы, выступают в роли буферных веществ и вместе с другими буферными системами обеспечивают постоянство pH крови.
Преобладание в крови альбуминов, характеризующихся относительно низкой вязкостью, делает кровь более подвижной, что облегчает деятельность сердца по обеспечению быстрой ее циркуляции в кровеносной системе. В крови различных видов животных альбумины составляют 30-55% от общего количества сывороточных белков. Синтезируются они в гепатоцитах печени, где образуется около 80% всех белков плазмы крови.
Альбумин несет наибольший электрический заряд. Благодаря малому молекулярному весу и большому заряду молекулы альбумина имеют самую высокую подвижность в электростатическом поле. В результате этого белки данной фракции относительно легко мигрируют через капиллярные стенки в ткани и после предварительного их гидролиза освобождающиеся аминокислоты используются для синтеза специфических тканевых белков, то есть альбумины являются аминокислотным резервом организма. Альбумины хорошо растворяются в воде и слабых растворах солей, кислот, щелочей.
Физиологическая роль альбуминов многообразна. Решающая роль принадлежит этому белку в поддержании каллоидно-осмотического давления и объема циркулирующей крови. На долю альбумина приходится 3/4 онкотической активности плазмы.
Благодаря высокой реакционной способности за счет многочисленных полярных группировок альбумины могут образовать комплексы с различными веществами (металлами, гормонами, желчными пигментами, витаминами, токсинами, лекарственными веществами) и обеспечивать транспорт последних в организме. Больше того, в составе этих комплексов многие биологически активные вещества и яды временно теряют свои свойства или, наоборот, их активность повышается, тем самым альбумины оказывают регулирующее влияние на метаболические процессы в организме.
Существенную роль играет альбумин в регулировании активности гормонов, ферментов, антибиотиков и других биологически активных веществ. Наряду с другими сывороточными белками альбумин участвует в транспорте и регулировании концентрации катионов и анионов - кальция, магния, ацетата, необходимых для нормальной жизнедеятельности организма. При попадании в организм тяжелых металлов альбумин связывает их, обезвреживает и выводит через почки. Наконец, как основной белок альбумин служит главным резервом азота аминокислот, а возможно и пептидов в организме, ему принадлежит ведущая роль в обмене белков тканей.
Глобулины представляют собой большую группу белков различной структуры с важными биологическими функциями. В состав глобулина входят α-, β-, γ-глобулины.
Белки сыворотки крови, которые при электрофорезе перемещаются вслед за альбуминами, называются α-глобулинами. В зависимости от условий электрофореза (на бумаге, агар-агаре, полиакриламидном геле) они почти всегда четко разделяются на несколько подфракций. Молекулярная масса белков этой группы колеблется в пределах 16-200 тыс., их изоэлектрическая точка находится при pH = 4,7-5,2. Синтезируются они преимущественно в печени. Среди других белков α-глобулины наиболее быстро метаболизируемые (период их полураспада 0,6-0,8 суток).
α-глобулины сыворотки крови представлены сложными белками - пептидами, молекула которых состоит из белка и небелковой части. Небелковую часть молекулы чаще образуют углеводы, реже - липиды, α-глобулины несут заряд, равный заряду молекулы альбумина, но размер молекулы их гораздо больше, поэтому в электрическом поле они движутся медленнее альбуминов. В крови α-глобулины специализированны как белки-носители, что объясняется их высокой реакционной способностью, обеспечивающей им возможность соединяться со многими веществами (липидами, углеводами, жирорастворимыми витаминами, желчными пигментами).
Белки этой фракции особенно богаты углеводами (в них содержится до 25-35% всех связанных с белками крови углеводов). В составе α-глобулинов имеются специализированные углеводсодержащие белки - гаптоглобин и церулоплазмин, осуществляющие транспорт металлов. Так, гаптоглобин - переносчик железа, цинка и меди; церулоплазмин - переносчик меди с оксидазной активностью.
Во фракции α-глобулинов имеется небольшое количество антител (например, антитела против возбудителей дизентерии), а также белки, участвующие в свертывании крови, некоторые ферменты.
Белки β-глобулиновой фракции на электрофореграмме размещаются вслед за α-глобулинами. По своему составу они неоднородны. Среди них можно выделить относительно низкомолекулярные вещества с массой около 90 тыс. и крупнодисперсные молекулы с массой до 1,3 млн. Изоэлектрическая точка β-глобулинов находится при pH - 4,4. Синтезируются они преимущественно в печени и частично в лимфоидной ткани других органов. Период полураспада β-глобулинов от 0,5 до 8 суток.
β-глобулины также относятся к сложным белкам. Размер частиц β-глобулинов значительно больше, а заряд меньше, чем у γ-глобулинов, за которыми они движутся в электрическом поле. У β-глобулинов ярко выражена способность к комплексообразованию со многими веществами крови, но больше всего эти свойства проявляются у них по отношению к липидам. В этой фракции сконцентрировано до 70-75% липидов крови. β-глобулины легко вступают в соединение с различными веществами и служат для их транспорта и обезвреживания. Молекулы β-глобулинов фиксируют на себе углеводы, витамины, гормоны, ферменты, липиды, различные продукты обмена веществ клеточного распада и проникающие в организм вредные вещества. С β-глобулинами связаны групповые факторы крови, комплемент. Ряд белков этой фракции входит в состав свертывающей системы крови. Среди них - протромбин, антигемофильный глобулин и другие. Основную массу фракции β-глобулинов составляют липопротеиды, однако в этой группе находятся также два металлопротеида: железосодержащий белок трансферрин и медьсодержащий белок церулоплазмин. Одной из главных функций трансферрина является транспорт железа из пищеварительного тракта к депонирующим органам, к месту синтеза гемоглобина и некоторых железосодержащих ферментов.
Наименее подвижные белки на электрофореграмме сыворотки крови γ-глобулины. Впервые они были выделены в 1937 г. Тизелиусом, указавшим на роль этих белков как защитных факторов организма, γ-глобулиновая фракция представляет собой группу белков, гетерогенную по физико-химическим свойствам. Об этом свидетельствует широкий спектр их электрофоретической подвижности в различных поддерживающих средах, неоднородность по молекулярному весу. Физиологическая роль γ-глобулинов связана, прежде всего, с иммунологическими процессами -в их состав входит основная масса антител. Антитела, присутствуя в сыворотке крови, принимают постоянное участие в неспецифической защите. Они образуются как нормальный компонент сыворотки, а не в ответ на стимуляцию патогенными микроорганизмами. Некоторая специфичность γ-глобулинов животных, не подвергавшихся воздействию антигена, относится скорей всего к реакции на антигенные вещества, проникшие в организм через раны, ротовую полость, желудочно-кишечный тракт и дыхательные пути. Эта функция γ-глобулинов получила название транспортной.
При росте, беременности, лактации, яйценоскости, мышечной работе и других физиологических процессах, а также при заболеваниях животных содержание одних белков уменьшается, других - возрастает. Так, в крови новорожденных телят почти полностью отсутствуют γ-глобулины. Они появляются в ней в молозивный период, т. е. в первую неделю жизни. Установлено, что у животных с возрастом сыворотка крови обогащается глобулинами и параллельно с этим относительно снижается содержание белков альбуминов. В период интенсивного роста животных, когда в крови наблюдается снижение содержания альбуминов, параллельно увеличивается относительное количество α-глобулинов. Новый подъем абсолютной и относительной концентрации α-глобулинов наблюдается в период лактации у млекопитающих и в разгар яйцекладки у птиц.
Некоторые изменения белковой картины крови можно вызвать переменой рационов кормления животных. Так, перевод коров на зеленый корм вызывает увеличение глобулинов и в сыворотке крови.
Высокая молочная продуктивность животных сопровождается повышением содержания белков в сыворотке крови. Оно заметно увеличивается в разгар лактации и падает с ее затуханием. Увеличение общего белка и альбуминов, и уменьшение глобулинов наблюдается в начале лактации, а к концу лактации происходит уменьшение альбуминов и увеличение глобулинов. У сухостойных коров глобулина содержится больше, чем у дойных. В период лактации содержание общего белка в сыворотке крови коров изменяется мало, наблюдается только небольшое понижение уровня общего белка в первый месяц лактации, и увеличение его, начиная с третьего месяца. Процессы созревания плода также накладывают существенный отпечаток на белковую картину крови беременной самки. Как правило, на последних стадиях беременности, в период сухостоя, кровь коров обогащается глобулинами при одновременном падении общего содержания белков.
Молочная продуктивность имеет отрицательную коррелятивную связь с содержанием γ-глобулинов в сыворотке крови коров. Альбумин и α-глобулиновая фракция в период раздоя увеличиваются, а к запуску уменьшаются. Содержание альбуминов в сыворотке крови у высокопродуктивных коров устойчиво, а с седьмого месяца снижается. Это обусловлено увеличением обмена веществ в связи с ростом плода, поскольку альбумин является белково-пластичным материалом. В динамике глобулина в течение всей лактации наблюдается иная картина. В начале лактации количество глобулина повышено, затем снижается и к концу лактации опять увеличивается. У коров содержание фосфатид-альбуминовых комплексов в крови интенсивно падает в процессе лактации. Уровень фосфатид-глобулиновых комплексов в то же время медленно нарастает.
У цыплят (яичные породы кур) содержится от 2 до 3% белков, а у взрослых кур 4,3-5,0%, причем с развитием яйцекладки их содержание постепенно уменьшается. У высокопродуктивных кур в период яйцекладки в крови больше белков, чем у низкопродуктивных.
Белки сыворотки кур в период интенсивной яйцекладки связывают большое количество фосфатидов, чем в период затухания яйцекладки, и в этот период быстро нарастают фосфатид-глобулиновые комплексы (в 8 раз и более). Когда процесс яйцекладки прекращается, восстанавливаются прежние свойства глобулинов.
Отношение альбуминов к глобулинам (белковый коэффициент) зависит от возраста и продуктивности птицы. С возрастом количество альбуминов несколько уменьшается, а глобулинов -увеличивается. Глобулиновая фракция белка сыворотки крови по мере роста молодняка вначале уменьшается, а затем постепенно достигает максимума к 150-дневному возрасту. В процессе роста суммарное количество глобулинов в крови у цыплят больше, чем альбуминов.
В процессе развития животных изменяется не только соотношение сывороточных белков, но и многие их свойства, и в частности, способность образовывать биологические комплексные соединения с различными веществами.
При росте молодняка крупного рогатого скота количество альбуминов и особенно кальций-альбуминовых комплексов всегда увеличено, тогда как кальций-глобулиновые комплексы почти отсутствуют; при иммунизации лошадей столбнячным анатоксином в их крови возрастает количество альбуминов и холестерин-альбуминовых комплексов, тогда как количество комплексных соединений глобулинов изменяется очень мало. В крови стельных коров более 95% всего холестерина сыворотки находится в виде комплексов с альбуминами и глобулинами, но при заболеваниях (эндометриты, родильный парез, задержание последа и другие болезни) холестерол-белковые комплексы распадаются, и количество свободного холестерина в крови возрастает в 5-6 раз в сравнении с нормой. Давно известно, что при инфекционных заболеваниях кровь животных обогащается глобулинами.
Резкое увеличение содержания глобулинов в крови животных происходит при инфекционных заболеваниях, острых воспалительных процессах, в связи с тем, что иммунные тела и антитоксины являются по своей природе γ- и β-глобулинами и накапливаются в крови животных в процессе иммунизации.
Содержание белков в крови может снижаться против нормы (гипопротеинемия) при белковом голодании, приеме больших количеств жидкости, нарушении функции печени и почек, а также при неполноценном белковом питании (несбалансированность рациона по аминокислотам), нарушении всасывания аминокислот, повышенном распаде белков (лихорадка, тиреотоксикоз, злокачественные опухоли). При сильных поносах и рвотах концентрация белков в крови повышается (гиперпротеинемия).
Буферные свойства крови. Кровь и межклеточная жидкость имеют слабощелочную реакцию (pH 7,30-7,45). Активная реакция (концентрация водородных ионов) поддерживается на относительно постоянном уровне, несмотря на образование в обменных процессах кислых (больше) или щелочных продуктов. Следовательно, в организме имеется определенная степень кислотно-щелочного равновесия, обеспечивающаяся тремя основными механизмами: химическими буферными системами, легочным механизмом выделения углекислоты, экскрецией Н+ - или НСО3 - ионов с мочой. Сдвиг в кислую сторону в венозной крови зависит от повышения содержания в ней углекислоты. Образование кислых продуктов в процессе жизнедеятельности тканей связано со значительным сдвигом в кислую сторону. В этом случае pH внутри тканевых клеток колеблется в пределах 7,0-7,2. Поддержание активной реакции крови на относительно постоянном уровне, что исключительно важно для жизнедеятельности организма, обусловливается так называемыми буферными свойствами крови и деятельностью органов выделения.
Буферные свойства крови заключаются в способности препятствовать сдвигу активной реакции крови. Эта способность обусловливается буферными системами, образованными смесью слабой кислоты и основания (или щелочной соли). Всего их четыре: гемоглобиновая, белковая (плазмы), фосфатная и карбонатная. Соотношение угольной кислоты и двууглекислого натрия (карбонатная буферная система), одноосновного и двуосновного фосфорнокислого натрия (фосфатная буферная система), белков плазмы (буферная система белков плазмы), гемоглобина и калийной соли гемоглобина (буферная система гемоглобина). Буферные свойства крови на 75% зависят от содержания гемоглобина и его солей в крови.
Буферные системы особенно препятствуют сдвигу реакции крови в кислую сторону. Принцип действия буферных систем основан на замене сильной кислоты слабой, при диссоциации второй образуется меньше ионов Н4 и, следовательно, pH плазмы снижается в меньшей степени.
Молочная кислота, образующаяся в организме, более сильная, чем угольная. Поэтому она буферируется (нейтрализуется) бикарбонатом и замещается угольной кислотой.
Свободная угольная кислота способна связывать и ОН ионы с образованием ионов бикарбоната
Сущность действия фосфатной системы основана на диссоциации двузамещенного фосфата натрия с образованием двух ионов натрия и ионов вторичного фосфата. Последние связывают протоны и дают первичный фосфат, который, в свою очередь, может диссоциировать на ион водорода и анион вторичного фосфата.
Организм надежно защищен от сдвига реакции в кислую сторону. Важная золь в этом принадлежит карбонатной буферной системе, которая обеспечивает до 20% буферной емкости всей крови и основную часть буферной емкости плазмы.
Запас бикарбонатов плазмы, способных нейтрализовать поступающие в кровь кислые продукты метаболизма, называют щелочным резервом крови. Он измеряется по количеству миллилитров углекислоты, которое могут связать 100 мл крови при давлении углекислоты в 40 мм рт. ст., приблизительно соответствующему составу альвеолярного воздуха. Величина щелочного резерва зависит от вида животных, возраста, характера питания, физиологического состояния. Она ниже у молодняка, чем у взрослых животных, снижается после интенсивной работы. Щелочной резерв является одним из показателей метаболического профиля животных, используемого для оценки состояния их здоровья.
Поскольку в крови поддерживается постоянное отношение между кислотными и щелочными эквивалентами, возникает кислотно-щелочное равновесие.
Характеризующий это равновесие показатель активной реакции крови (pH) может колебаться в пределах 7,0-7,8. Большее смещение кислотно-щелочного равновесия представляет опасность для жизни. Важное значение для сохранения постоянства реакции крови имеет деятельность дыхательного аппарата (благодаря усиленной вентиляции легких удаляется избыточное количество углекислоты), а также почек и желудочно-кишечного тракта (через них выводится избыточное количество углекислоты и щелочей). Небольшое количество молочной кислоты выделяется также потовыми железами.
Определение резервной щелочности крови имеет большое значение при установлении ацидоза, который возникает или как результат искажения процессов обмена веществ из-за неполного окисления образующихся органических кислот, или вследствие расстройств и недостаточности выведения кислотных продуктов метаморфоза.
По уровню резервной щелочности можно судить об устойчивости состояния организма птицы, о напряженности физиологических процессов.
У водоплавающих птиц, в частности, у гусей, буферная емкость крови высокая, поэтому накопление в ней кислых продуктов во время длительного пребывания под водой не вызывает резких сдвигов pH.
Углеводы. В плазме крови сельскохозяйственных животных всегда находятся глюкоза, фруктоза и гликоген. Основным углеводом плазмы является глюкоза, содержание которой для каждого вида животных удерживается на относительно постоянном уровне. Глюкоза в крови находится как в свободном, так и в связанном состоянии в виде комплексов с белками. Содержание связанной глюкозы может достигать 40-50% от общего количества ее в крови. Соли, растворенные в плазме (главным образом, хлорид натрия), частично или полностью диссоциированы на электрически заряженные ионы - катионы и анионы. Содержащиеся в плазме электролиты (а также растворенные неэлектролиты - глюкоза и мочевина) участвуют в поддержании осмотического давления, обеспечивающего перемещение воды между кровью и тканями.
Повышение количества глюкозы в крови, гипергликемия, может быть алиментарного происхождения - после разового приема большого количества углеводов, и патологического - заболевание печени, поджелудочной железы, начальные стадии гипертиреоза и др. Гипергликемия сопровождается выделением сахара с мочой (глюкозурия).
Гипергликемии противоположна гипогликемия (пониженное содержание сахара в крови), возникающая при заболевании почек, повышенном поступлении в кровь инсулина, во второй стадии развития гипертиреоза.
В крови находится в небольших количествах гликоген (от 15 мг до 50 мг%) и всегда присутствуют как продукты промежуточного обмена углеводов молочная, пировиноградная, уксусная и другие кислоты. Большое значение имеет молочная кислота. При усиленной мышечной работе потребление гликогена повышается и одновременно увеличивается выделение молочной кислоты. Содержание последней в крови может достигать 150 мг% и более.
Содержание глюкозы в крови животных составляет примерно 0,1%. Жвачные животные в отличие от других имеют более низкую его концентрацию. В крови коров в возрасте от 2 до 8 лет уровень глюкозы равен 2,78 ммоль/л. У высокопродуктивных коров уровень глюкозы обычно снижен, и составляет порядка 1,67-2,50 ммоль/л, так как очень много сахара используется организмом для синтетических процессов, в то время, как поступление его в кровь ограничено. Сравнительно низкий уровень глюкозы в крови коров объясняется использованием его для синтеза молока. Существенной особенностью биохимии крови у жвачных является, с одной стороны, плохо выраженная способность поддерживать нормальный гликолитический уровень при голодании, то есть они не в состоянии хорошо использовать эндогенные факторы гликолеогенеза, с другой стороны, жвачные животные имеют слабую толерантность к глюкозе. Перечисленные особенности углеводного обмена у жвачных животных указывают на важную роль глюкозы в питании лактирующих коров.
Ферменты. В плазме и сыворотке крови всегда имеется некоторое количество ферментов, причем одни из них являются постоянными, а другие попадают в кровь только при существенных нарушениях в отдельных органах и тканях. К числу первых относятся ферменты, участвующие в свертывании крови (протромбин, проакцелерин, проконвертин и др.), неспецифическая холинэстераза, фосфатаза. Другие ферменты появляются в крови в результате распада отдельных клеток, повышения проницаемости клеточных мембран, а также ускоренного образования в условиях отсутствия специфических ингибиторов.
Так, при ряде заболеваний в крови резко повышается активность амилазы (при поражении поджелудочной железы), щелочной фосфатазы (при рахите и остеомаляции), кислой фосфатазы (при раке простатической железы), аминотрансферазы, дегидрогеназы, альдолазы (при инфаркте миокарда, заболеваниях печени, Е-авитаминозе), липазы (при панкреатитах, гепатитах, рахите).
Определение активности названных ферментов может представить значительный интерес в клинической практике. В ветеринарной практике нередко прибегают к определению протромбинового числа крови (скорость свертывания крови). Этот показатель характеризует функцию печени и при различных патологических состояниях может резко меняться. У здоровых коров, например, скорость свертывания крови (протромбиновое число) составляет 18-20 секунд, а у коров, страдающих маститом, оно удлиняется до 35 секунд. У яловых коров протромбино-вое число еще больше и может достигать 65-70 с. Повышенное протромбиновое число наблюдается при болезнях печени, остеомиелитах, хроническом сепсисе, эндометритах и других болезнях. Во всех случаях, когда в крови повышено протромбиновое число, у них наблюдается резкое снижение продуктивности.
Наряду с белками-ферментами в крови обнаруживаются и белки-гормоны - инсулин, тиреоглобулин, гормоны гипофиза, глюкагон, липокаин, кальцитонин.
Минеральные вещества. Минеральные соединения в крови находятся в различных физико-химических состояниях: в ионизированном состоянии, в виде молекулярно-дисперсных систем, в виде биохимических комплексов с белками и др. По-видимому, наиболее активными в обмене веществ являются минеральные соединения, связанные с белками крови. Их содержание изменяется очень значительно при различных физиологических состояниях. Они нарастают в крови и интенсивно потребляются тканями животного при беременности (йод), в процессе яйцекладки у птиц (кальций), при секреции молока у коров, кобыл и других животных (кальций), при продукции шерсти у овец (калий) и при различных болезнях и т. д.
Кальций входит в состав каждой клетки организма, участвует в различных физиологических процессах. Нарушения кальциевого обмена приводят к снижению продуктивности, понижению резистентности и как следствие наступлению различных тяжелых заболеваний.
Определение кальция в крови сельскохозяйственных животных приобрело диагностическое значение при изучении процессов роста, заболеваний костной системы, при воспалительных процессах. От 5 до 30% кальция и до 60% магния сыворотки крови животных находятся в составе прочных биокомплексов. Эти комплексы не разрушаются при осаждении трихлоруксусной кислотой. В то время как общее количество кальция в крови животного изменяется сравнительно мало, в пределах 10-20%, уровни кальций-альбуминовых и кальций-глобулиновых комплексов крови во много раз увеличиваются или уменьшаются в зависимости от физиологического состояния (лактация, рост, яйцекладка и т. д.) и от болезненного состояния животного (рахит, минеральная недостаточность, остеомаляция, болезнь Уильсона и т. д.).
У птицы кальция в крови значительно больше, чем в крови млекопитающих. Уровень кальция зависит от возраста и продуктивности птицы. Так, например, установлено, что в крови у кур-несушек значительная часть кальция связана в подвижные комплексы с альбуминами и глобулинами сыворотки крови. Эти комплексы активны в период яйценоскости и используются организмом птицы очень быстро. Как правило, повышение содержания кальция в крови у птиц отмечается непосредственно перед кладкой яиц, а в течение яйцекладки происходит его снижение. Минимальное содержание кальция в крови отмечается на пике яйцекладки.
Уровень кальция у крупного рогатого скота в период сухостоя наиболее высок, а к концу стельности происходит медленное снижение, которое заканчивается в период отела резким уменьшением до 8,90 мг на 100 мл крови. В первый месяц количество увеличивается до 10,90 мг, а к концу лактации до 13,60 мг и находится в обратной зависимости от продуктивности. В то же время количество кальция, связанного с альбуминами, снижается и в период сухостоя становится резко уменьшенным. При некоторых болезнях всегда происходит распад кальций-белковых комплексов и количество свободного кальция в крови нарастает. В крови коров, выбракованных, потерявших продуктивность, количество кальция, связанного с белками, как правило, очень мало.
Таким образом, активная продукция белков молока и яиц сопровождается накоплением в крови кальций-белковых комплексов. В процессе стельности и лактации у коров происходит активное расходование кальций-белковых комплексов в сыворотке крови. Оно тем интенсивнее, чем выше молочная продуктивность животного.
О более интенсивном метаболизме у высокопродуктивных коров можно судить на основании большего количества фосфатов в их крови в сухостойный период по сравнению с коровами низкопродуктивными. Обращает на себя внимание и динамика изменений концентрации неорганического фосфора в крови. Общее содержание фосфатов в крови за лактацию находится в обратной зависимости от молочной продуктивности коров. Так, в крови высокопродуктивных помесных коров во время лактации содержится сахара и фосфора меньше, чем у чистопородных коров черно-пестрой породы, а в сухостойный период, наоборот, в крови высокопродуктивных животных этих компонентов больше. Более низкое содержание фосфора в крови высокопродуктивных коров в процессе лактации обусловлено, по-видимому, более интенсивным его использованием на синтез молока. Содержание неорганического фосфора в крови птицы значительно колеблется в зависимости от интенсивности обменных процессов и фосфорного питания. Отмечается постепенное понижение его концентрации до начала репродуктивной деятельности.
Отдельные ионы крови также имеют различное биохимическое значение. Так, ионы натрия вызывают повышенное набухание тканей и в связи с этим увеличивают их проницаемость. Действие ионов кальция противоположно. Кальций является антагонистом натрия в его действии на клетку, он как бы уплотняет протоплазму клетки, уменьшает ее проницаемость, ослабляет эксудацию ткани. При недостатке кальция происходит ослабление сокращений желудочков сердца, при избытке - предсердий. Ионы магния вызывают состояние анестезии, ионы кальция снимают его. Катионы крови активно действуют на разные гормоны и другие белки. В плазме крови содержатся микроэлементы: железо, цинк, медь, марганец и др. Количество их измеряется в тысячных долях миллиграмма - гаммах (γ), однако значение их для организма очень велико. Они входят в состав многих ферментов, сложных белков, обусловливая их активность и специфическую роль в обмене веществ, а также в состав различных биокомплексов. Так, например, медь находится в крови в составе прочного комплекса с белком, называемого церулоплазмином. При болезни Уильсона в крови резко снижается содержание этого белка. Церулоплазмин обладает ферментативной активностью оксидазы по отношению к аскорбиновой кислоте и к биогенным аминам крови.