Рентгенологические методы исследования. Рентген костей: виды рентгеновского исследования, методики исследования. Показания и противопоказания Рентгенологический метод исследования позволяет установить

Рентгенологические методы исследования

1. Понятие рентгеновского излучения

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10~ 5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым Y-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор. Подогревной катод испускает электроны. Анод, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение под углом к оси трубки. Анод изготовлен из хорошо теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская, трубка с вращающимся анодом. В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение. Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют также и сплошным.

В каждом из спектров наиболее коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона.

Коротковолновое рентгеновское излучение, обычно, обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким. Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения. Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует характеристическому рентгеновскому излучению. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, в результате высвечиваются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли.

Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием и для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии фотона и энергии ионизации имеют место три главных процесса

Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает если энергия фотона меньше энергии ионизации. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгенструктурного анализа.

Некогерентное рассеяние (эффект Комптона). В 1922 г А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации. Это явление обусловлено тем, что при взаимодействии с атомом энергия фотона расходуется на образование нового рассеянного фотона рентгеновского излучения, на отрыв электрона от атома (энергия ионизации А) и сообщение электрону кинетической энергии.

Существенно, что в этом явлении наряду с вторичным рентгеновским излучением (энергия hv" фотона) появляются электроны отдачи (кинетическая энергия £ к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект. При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Перечислим некоторые процессы, наблюдаемые при действии рентгеновского излучения на вещество.

Рентгенолюминесценция – свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшее излучение, а преобразователь строит видимый световой образ, который воспринимает врач.

Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), преобразователя изображения и врача-рентгенолога.

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально X 3), в чем проявляется большая проникающая способность жесткого излучения и пропорционально третьей степени атомного номера вещества-поглотителя. Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления кости, мягкой ткани или воды. Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Современная рентгенодиагностическая установка представляет собой сложное техническое устройство. Оно насыщено элементами телеавтоматики, электроники, электронно-вычислительной техники. Многоступенчатая система защиты обеспечивает радиационную и электрическую безопасность персонала и больных.

Рентгенология как наука берет свое начало от 8 ноября 1895 г., когда немецкий физик профессор Вильгельм Конрад Рентген открыл лучи, впоследствии названные его именем. Сам Рентген назвал их X-лучами. Это название сохранилось на его родине и в странах запада.

Основные свойства рентгеновских лучей:

    Рентгеновские лучи, исходя из фокуса рентгеновской трубки, распространяются прямолинейно.

    Они не отклоняются в электромагнитном поле.

    Скорость распространения их равняется скорости света.

    Рентгеновские лучи невидимы, но, поглощаясь некоторыми веществами, они заставляют их светиться. Это свечение называется флюоресценцией, оно лежит в основе рентгеноскопии.

    Рентгеновские лучи обладают фотохимическим действием. На этом свойстве рентгеновских лучей основывается рентгенография (общепринятый в настоящее время метод производства рентгеновских снимков).

    Рентгеновское излучение обладает ионизирующим действием и придает воздуху способность проводить электрический ток. Ни видимые, ни тепловые, ни радиоволны не могут вызвать это явление. На основе этого свойства рентгеновское излучение, как и излучение радиоактивных веществ, называется ионизирующим излучением.

    Важное свойство рентгеновских лучей – их проникающая способность, т.е. способность проходить через тело и предметы. Проникающая способность рентгеновских лучей зависит:

    От качества лучей. Чем короче длина рентгеновских лучей (т.е., чем жестче рентгеновское излучение), тем глубже проникают эти лучи и, наоборот, чем длиннее волна лучей (чем мягче излучение), тем на меньшую глубину они проникают.

    От объема исследуемого тела: чем толще объект, тем труднее рентгеновские лучи «пробивают» его. Проникающая способность рентгеновских лучей зависит от химического состава и строения исследуемого тела. Чем больше в веществе, подвергаемом действию рентгеновских лучей, атомов элементов с высоким атомным весом и порядковым номером (по таблице Менделеева), тем сильнее оно поглощает рентгеновское излучение и, наоборот, чем меньше атомный вес, тем прозрачнее вещество для этих лучей. Объяснение этого явления в том, что в электромагнитных излучениях с очень малой длиной волны, каковыми являются рентгеновские лучи, сосредоточена большая энергия.

    Лучи Рентгена обладают активным биологическим действием. При этом критическими структурами являются ДНК и мембраны клетки.

Необходимо учитывать еще одно обстоятельство. Рентгеновские лучи подчиняются закону обратных квадратов, т.е. интенсивность рентгеновских лучей обратно пропорциональна квадрату расстояния.

Гамма-лучи обладают такими же свойствами, но эти виды излучений различаются по способу их получения: рентгеновское излучение получают на высоковольтных электрических установках, а гамма-излучение – вследствие распада ядер атомов.

Методы рентгенологического исследования делятся на основные и специальные, частные.

Основные рентгенологические методы: рентгенография, рентгеноскопия, компьютерная рентгеновская томография.

Рентгенографию и рентгеноскопию выполняют на рентгеновских аппаратах. Их основными элементами являются питающее устройство, излучатель (рентгеновская трубка), устройства для формирования рентгеновского излучения и приемники излучения. Рентгеновский аппарат

питается от городской сети переменным током. Питающее устройство повышает напряжение до 40-150 кВ и уменьшает пульсацию, в некоторых аппаратах ток практически постоянный. От величины напряжения зависит качество рентгеновского излучения, в частности, его проникающая способность. С увеличением напряжения энергия излучения возрастает. При этом уменьшается длина волны и увеличивается проникающая способность получаемого излучения.

Рентгеновская трубка − это электровакуумный прибор, преобразующий электрическую энергию в энергию рентгеновского излучения. Важным элементом трубки являются катод и анод.

При подаче тока низкого напряжения на катод нить накала нагревается и начинает испускать свободные электроны (электронная эмиссия), образуя электронное облако вокруг нити. При включении высокого напряжения электроны, испускаемые катодом, ускоряются в электрическом поле между катодом и анодом, летят от катода к аноду и, ударяясь о поверхность анода, тормозятся, выделяя кванты рентгеновского излучения. Для уменьшения влияния рассеянного излучения на информативность рентгенограмм используют отсеивающие решетки.

Приемниками рентгеновского излучения являются рентгеновская пленка, флюоресцирующий экран, системы цифровой рентгенографии, а в КТ – дозиметрические детекторы.

Рентгенография − рентгенологическое исследование, при котором получают изображение исследуемого объекта, фиксированное на светочувствительном материале. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Для отсеивания мягких рентгеновских лучей, которые могут достигнуть пленки, а также вторичного излучения используются специальные подвижные решетки. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 × 18 см, 18 × 24 см, 24 × 30 см, 30 × 40 см и др.).

Рентгеновская пленка покрывается обычно с двух сторон фотографической эмульсией. Эмульсия содержит кристаллы бромида серебра, которые ионизируются фотонами рентгеновских лучей и видимого света. Рентгеновская пленка находится в светонепроницаемой кассете вместе с рентгеновскими усиливающими экранами (РЭУ). РЭУ представляет собой плоскую основу, на которую наносят слой рентгенолюминофора. На рентгенографическую пленку действуют при рентгенографии не только рентгеновские лучи, но и свет от РЭУ. Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. В настоящее время широко применяются экраны c люминофорами, активированными редкоземельными элементами: бромидом окиси лантана и сульфитом окиси гадолиния. Хороший коэффициент полезного действия люминофора редкоземельных элементов способствует высокой светочувствительности экранов и обеспечивает высокое качество изображения. Существуют и специальные экраны – Gradual, которые могут выравнивать имеющиеся различия в толщине и (или) плотности объекта съемки. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.

Почернение рентгеновской пленки происходит вследствие восстановления металлического серебра под действием рентгеновского излучения и света в ее эмульсионном слое. Количество ионов серебра зависит от числа действующих на пленку фотонов: чем больше их количество, тем больше число ионов серебра. Изменяющаяся плотность ионов серебра формирует скрытое внутри эмульсии изображение, которое становится видимым после специальной обработки проявителем. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, закреплению, промывке пленки с последующим высушиванием. В процессе проявления пленки осаждается металлическое серебро черного цвета. Неионизированные кристаллы бромида серебра остаются неизмененными и невидимыми. Фиксаж удаляет кристаллы бромида серебра, оставляя металлическое серебро. После фиксации пленка нечувствительна к свету. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин., или происходит естественным путем, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования. Изображение на рентгеновской пленке обусловлено различной степенью почернения, вызванного изменениями плотности черных гранул серебра. Наиболее темные области на рентгеновской пленке соответствуют наиболее высокой интенсивности излучения, поэтому изображение называют негативным. Белые (светлые) участки на рентгенограммах называют темными (затемнения), а черные − светлыми (просветления) (рис. 1.2).

Преимущества рентгенографии:

    Важное преимущество рентгенографии − высокое пространственное разрешение. По этому показателю с ней не может сравниться ни один метод визуализации.

    Доза ионизирующего излучения ниже, чем при рентгеноскопии и рентгеновской компьютерной томографии.

    Рентгенографию можно производить как в рентгеновском кабинете, так и непосредственно в операционной, перевязочной, гипсовальной или даже в палате (с помощью передвижных рентгеновских установок).

    Рентгеновский снимок является документом, который может храниться длительное время. Его могут изучать многие специалисты.

Недостаток рентгенографии: исследование статическое, отсутствует возможность оценки движения объектов в процессе исследования.

Цифровая рентгенография включает в себя детекцию лучевой картины, обработку и запись изображения, представление изображения и просмотр, сохранение информации. При цифровой рентгенографии аналоговая информация преобразуется в цифровую форму при помощи аналогово-цифровых преобразователей, обратный процесс происходит при помощи цифро-аналоговых преобразователей. Для показа изображения цифровая матрица (числовые строки и колонки) трансформируется в матрицу видимых элементов изображения − пикселов. Пиксел − воспроизводимый системой формирования изображения минимальный элемент картины. Каждому пикселу, в соответствии со значением цифровой матрицы, присваивается один из оттенков серой шкалы. Число возможных оттенков серой шкалы в диапазоне между черным и белым часто определяется на бинарной основе, например, 10 битов = 2 10 или 1024 оттенка.

В настоящее время технически реализованы и уже получили клиническое применение четыре системы цифровой рентгенографии:

− цифровая рентгенография с экрана электронно-оптического преобразователя (ЭОП);

− цифровая люминесцентная рентгенография;

− сканирующая цифровая рентгенография;

− цифровая селеновая рентгенография.

Система цифровой рентгенографии с экрана ЭОП состоит из экрана ЭОП, телевизионного тракта и аналого-цифрового преобразователя. В качестве детектора изображения используется ЭОП. Телевизионная камера превращает оптическое изображение на экране ЭОП в аналоговый видеосигнал, который далее при помощи аналого-цифрового преобразователя формируется в набор цифровых данных и передается в накопительное устройство. Затем эти данные компьютер переводит в видимое изображение на экране монитора. Изображение изучается на мониторе и может быть распечатано на пленке.

В цифровой люминесцентной рентгенографии люминесцентные запоминающие пластины после их экспонирования рентгеновским излучением сканируются специальным лазерным устройством, а возникающий в процессе лазерного сканирования световой пучок трансформируется в цифровой сигнал, воспроизводящий изображение на экране монитора, которое может распечатываться. Люминесцентные пластины встроены в кассеты, многократно используемые (от 10000 до 35000 раз) с любым рентгеновским аппаратом.

В сканирующей цифровой рентгенографии через все отделы исследуемого объекта последовательно пропускают движущийся узкий пучок рентгеновского излучения, которое затем регистрируется детектором и после оцифровки в аналого-цифровом преобразователе передается на экран монитора компьютера с возможной последующей распечаткой.

Цифровая селеновая рентгенография в качестве приемника рентгеновского излучения использует детектор, покрытый слоем селена. Формирующееся в селеновом слое после экспонирования скрытое изображение в виде участков с различными электрическими зарядами считывается с помощью сканирующих электродов и трансформируется в цифровой вид. Далее изображение можно рассматривать на экране монитора или распечатывать на пленку.

Преимущества цифровой рентгенографии:

    снижение дозовых нагрузок на пациентов и медицинский персонал;

    экономичность в эксплуатации (во время съемки сразу получают изображение, отпадает необходимость использования рентгеновской пленки, других расходных материалов);

    высокая производительность (около 120 изображений в час);

    цифровая обработка изображений улучшает качество снимка и тем самым повышает диагностическую информативность цифровой рентгенографии;

    дешевое цифровое архивирование;

    быстрый поиск рентгеновского изображения в памяти ЭВМ;

    воспроизведение изображения без потерь его качества;

    возможность объединения в единую сеть различного оборудования отделения лучевой диагностики;

    возможность интеграции в общую локальную сеть учреждения («электронная история болезни»);

    возможность организации удаленных консультаций («телемедицина»).

Качество изображения при использовании цифровых систем может быть охарактеризовано, как и при других лучевых методах, такими физическими параметрами, как пространственное разрешение и контраст. Контраст теневой − это разница оптических плотностей между соседними участками изображения. Пространственное разрешение − это минимальное расстояние между двумя объектами, при котором на изображении их еще можно отделить один от другого. Оцифровка и обработка изображения приводят к дополнительным диагностическим возможностям. Так, существенной отличительной особенностью цифровой рентгенографии является больший динамический диапазон. То есть, рентгеновские снимки с помощью цифрового детектора будут хорошего качества в большем диапазоне доз рентгеновского излучения, чем при обычной рентгенографии. Возможность свободной настройки контрастности изображения при цифровой обработке также является существенным различием между традиционной и цифровой рентгенографией. Передача контраста, таким образом, не ограничена выбором приемника изображения и параметров исследования и может дополнительно приспосабливаться к решению диагностических задач.

Рентгеноскопия – просвечивание органов и систем с применением рентгеновских лучей. Рентгеноскопия – анатомо-функциональный метод, который предоставляет возможность изучения нормальных и патологических процессов органов и систем, а также тканей по теневой картине флюоресцирующего экрана. Исследование выполняется в реальном масштабе времени, т.е. производство изображения и получение его исследователем совпадают во времени. При рентгеноскопии получают позитивное изображение. Видимые на экране светлые участки называют светлыми, а темные − темными.

Преимущества рентгеноскопии:

    позволяет исследовать больных в различных проекциях и позициях, в силу чего можно выбрать положение, при котором лучше выявляется патологическое образование;

    возможность изучения функционального состояния ряда внутренних органов: легких, при различных фазах дыхания; пульсацию сердца с крупными сосудами, двигательную функцию пищеварительного канала;

    тесное контактирование врача-рентгенолога с больным, что позволяет дополнить рентгенологическое исследование клиническим (пальпация под визуальным контролем, целенаправленный анамнез) и т.д.;

    возможность выполнения манипуляций (биопсий, катетеризаций и др.) под контролем рентгеновского изображения.

Недостатки:

    сравнительно большая лучевая нагрузка на больного и обслуживающий персонал;

    малая пропускная способность за рабочее время врача;

    ограниченные возможности глаза исследователя в выявлении мелких тенеобразований и тонких структур тканей; показания к рентгеноскопии ограничены.

Электронно–оптическое усиление (ЭОУ). Оно основано на принципе преобразования рентгеновского изображения в электронное с последующим его превращением в усиленное световое. Рентгеновский ЭОП представляет собой вакуумную трубку (рис. 1.3). Рентгеновские лучи, несущие изображение от просвечиваемого объекта, попадают на входной люминесцентный экран, где их энергия преобразуется в световую энергию излучения входного люминесцентного экрана. Далее фотоны, испускаемые люминесцентным экраном, попадают на фотокатод, преобразующий световое излучение в поток электронов. Под воздействием постоянного электрического поля высокого напряжения (до 25 кВ) и в результате фокусировки электродами и анодом специальной формы энергия электронов возрастает в несколько тысяч раз и они направляются на выходной люминесцентный экран. Яркость свечения выходного экрана усиливается до 7 тысяч раз, по сравнению с входным экраном. Изображение с выходного люминесцентного экрана при помощи телевизионной трубки передается на экран дисплея. Применение ЭОУ позволяет различать детали величиной 0,5 мм, т.е. в 5 раз более мелкие, чем при обычном рентгеноскопическом исследовании. При использовании этого метода может применяться рентгенокинематография, т.е. запись изображения на кино- или видеопленку и оцифровывание изображения при помощи аналого-цифрового преобразователя.

Рис. 1.3. Схема ЭОП. 1− рентгеновская трубка; 2 − объект; 3 − входной люминесцентный экран; 4 − фокусирующие электроды; 5 − анод; 6 − выходной люминесцентный экран; 7 − внешняя оболочка. Пунктирными линиями обозначен поток электронов.

Рентгеновская компьютерная томография (КТ). Создание рентгеновской компьютерной томографии явилось важнейшим событием в лучевой диагностике. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным ученым Кормаку (США) и Хаунсфилду (Англия) за создание и клиническое испытание КТ.

КТ позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей.

В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами и создание рентгеновского изображения органов и тканей с помощью ЭВМ. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, изучаемое на мониторе (рис. 1.4).

Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных сканов). На основе аксиальных сканов получают реконструкцию изображения в других плоскостях.

В практике рентгенологии в настоящее время используется, в основном, три типа компьютерных томографов: обычные шаговые, спиральные или винтовые, многосрезовые.

В обычных шаговых компьютерных томографах высокое напряжение к рентгеновской трубке подается по высоковольтным кабелям. Из-за этого трубка не может вращаться постоянно, а должна выполнять качающиеся движения: один оборот по часовой стрелке, остановка, один оборот против часовой стрелки, остановка и обратно. В результате каждого вращения получают одно изображение толщиной 1 – 10 мм за 1 – 5 сек. В промежутке между срезами стол томографа с пациентом передвигается на установленную дистанцию в 2 – 10 мм, и измерения повторяются. При толщине среза 1 – 2 мм шаговые аппараты позволяют выполнять исследование в режиме «высокого разрешения». Но эти аппараты обладают рядом недостатков. Продолжительность сканирования относительно большая, и на изображениях могут появляться артефакты от движения и дыхания. Реконструкция изображения в проекциях, отличных от аксиальных, трудновыполнима или просто невозможна. Серьезные ограничения имеются при выполнении динамического сканирования и исследований с контрастным усилением. Кроме того, могут быть не выявлены малоразмерные образования между срезами при неравномерном дыхании пациента.

В спиральных (винтовых) компьютерных томографах постоянное вращение трубки совмещено с одновременным перемещением стола пациента. Таким образом, при исследовании получают информацию сразу от всего исследуемого объема тканей (целиком голова, грудная клетка), а не от отдельных срезов. При спиральной КТ возможна трехмерная реконструкция изображения (3D-режим) с высоким пространственным разрешением, в том числе виртуальная эндоскопия, позволяющая визуализировать внутреннюю поверхность бронхов, желудка, толстой кишки, гортани, придаточных пазух носа. В отличие от эндоскопии при помощи волоконной оптики, сужение просвета исследуемого объекта не является препятствием для виртуальной эндоскопии. Но в условиях последней цвет слизистой оболочки отличается от естественного и невозможно выполнить биопсию (рис. 1.5).

В шаговых и спиральных томографах используют один или два ряда детекторов. Многосрезовые (мультидетекторные) компьютерные томографы снабжены 4, 8, 16, 32 и даже 128 рядами детекторов. В многосрезовых аппаратах значительно сокращается время сканирования и улучшается пространственная разрешающая способность в аксиальном направлении. На них можно получать информацию с использованием методики высокого разрешения. Значительно улучшается качество мультипланарных и объемных реконструкций. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:

    Прежде всего, высокой чувствительностью, что позволяет дифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5%; на обычных рентгенограммах этот показатель составляет 10-20% .

    КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что дает четкое изображение без наслоения лежащих выше и ниже образований.

    КТ дает возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований.

    КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений.

    КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.

    При спиральной КТ в условиях трехмерной реконструкции можно выполнить виртуальную эндоскопию.

    КТ незаменима при планировании лучевой терапии (составление карт облучения и расчета доз).

Данные КТ могут быть использованы для диагностической пункции, которая может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определения рецидивов и сопутствующих осложнений.

Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань, в зависимости от плотности атомной массы, по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (КА), обозначаемый в единицах Хаунсфилда (HU). HUводы принимают за 0; кости, обладающие наибольшей плотностью – за +1000, воздух, имеющий наименьшую плотность, – за − 1000.

При КТ весь диапазон серой шкалы, в котором представлено изображение томограмм на экране видеомонитора, составляет от – 1024 (уровень черного цвета) до + 1024 HU (уровень белого цвета). Таким образом, при КТ «окно», то есть диапазон изменений HU (единиц Хаунсфилда) измеряется от – 1024 до + 1024 HU. Для визуального анализа информации в серой шкале необходимо ограничить «окно» шкалы соответственно изображению тканей с близкими показателями плотности. Последовательно изменяя величину «окна», можно изучить в оптимальных условиях визуализации разные по плотности участки объекта. Например, для оптимальной оценки легких уровень черного цвета выбирают, близко к средней плотности легких (между – 600 и – 900 HU). Под «окном» с шириной 800 с уровнем – 600 HU подразумевается, что плотности – 1000 HU видны как черные, а все плотности – 200 HU и свыше – как белые. Если то же изображение используется для оценки деталей костных структур грудной клетки, «окно» шириной 1000 и уровнем + 500 HU создаст полную серую шкалу в диапазоне между 0 и + 1000 HU. Изображение при КТ изучается на экране монитора, помещается в долговременную память компьютера или получается на твердом носителе − фотопленке. Светлые участки на компьютерной томограмме (при черно-белом изображении) называют «гиперденсивными», а темные − «гиподенсивными». Денсивность означает плотность исследуемой структуры (рис. 1.6).

Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, чтоHUпораженной ткани отличается от такового здоровой на 10 - 15 ед.

Недостатком КТ является увеличение лучевой нагрузки на пациентов. В настоящее время на КТ приходится 40% от коллективной дозы облучения, получаемой пациентами при рентгенодиагностических процедурах, тогда как КТ-исследование составляет лишь 4% от числа всех рентгенологических исследований.

Как в КТ, так и при рентгенологических исследованиях возникает необходимость применения для увеличения разрешающей способности методики “усиления изображения”. Контрастирование при КТ производится с водорастворимыми рентгеноконтрастными средствами.

Методика “усиления“ осуществляется перфузионным или инфузионным введением контрастного вещества.

Методы рентгенологического исследования называются специальными, если используется искусственное контрастирование. Органы и ткани человеческого организма становятся различимыми, если они поглощают рентгеновские лучи в различной степени. В физиологических условиях такая дифференциация возможна только при наличии естественной контрастности, которая обусловливается разницей в плотности (химическом составе этих органов), величине, положении. Хорошо выявляется костная структура на фоне мягких тканей, сердца и крупных сосудов на фоне воздушной легочной ткани, однако камеры сердца в условиях естественной контрастности невозможно выделить отдельно, как, например, и органы брюшной полости. Необходимость изучения рентгеновскими лучами органов и систем, имеющих одинаковую плотность, привело к созданию методики искусственного контрастирования. Сущность этой методики заключается во введении в исследуемый орган искусственных контрастных веществ, т.е. веществ, имеющих плотность, отличающуюся от плотности органа и окружающей его среды (рис. 1.7).

Рентгеноконтрастные средства (РКС) принято подразделять на вещества с высоким атомным весом (рентгено-позитивные контрастные вещества) и низким (рентгено-негативные контрастные вещества). Контрастные вещества должны быть безвредными.

Контрастные вещества, интенсивно поглощающие рентгеновские лучи (позитивные рентгеноконтрастные средства) это:

    Взвеси солей тяжелых металлов – сернокислый барий, применяемый для исследования ЖКТ (он не всасывается и выводится через естественные пути).

    Водные растворы органических соединений йода – урографин, верографин, билигност, ангиографин и др., которые вводятся в сосудистое русло, с током крови попадают во все органы и дают, кроме контрастирования сосудистого русла, контрастирование других систем - мочевыделительной, желчного пузыря и т.д.

    Масляные растворы органических соединений йода – йодолипол и др., которые вводятся в свищи и лимфатические сосуды.

Неионные водорастворимые йодсодержащие рентгеноконтрастные средства: ультравист, омнипак, имагопак, визипак характеризуются отсутствием в химической структуре ионных групп, низкой осмолярностью, что значительно уменьшает возможность патофизиологических реакций, и тем самым обусловливается низкое количество побочных эффектов. Неионные йодсодержащие рентгеноконтрастные средства обусловливают более низкое количество побочных эффектов, чем ионные высокоосмолярные РКС.

Рентгенонегативные, или отрицательные контрастные вещества, – воздух, газы «не поглощают» рентгеновские лучи и поэтому хорошо оттеняют исследуемые органы и ткани, которые обладают большой плотностью.

Искусственное контрастирование по способу введения контрастных препаратов подразделяется на:

    Введение контрастных веществ в полость исследуемых органов (самая большая группа). Сюда относятся исследования ЖКТ, бронхография, исследования свищей, все виды ангиографии.

    Введение контрастных веществ вокруг исследуемых органов – ретропневмоперитонеум, пневморен, пневмомедиастинография.

    Введение контрастных веществ в полость и вокруг исследуемых органов. К этой группе относится париетография. Париетография при заболеваниях органов ЖКТ заключается в получении снимков стенки исследуемого полого органа после введения газа вначале вокруг органа, а затем в полость этого органа.

    Способ, в основе которого лежит специфическая способность некоторых органов концентрировать отдельные контрастные препараты и при этом оттенять их на фоне окружающих тканей. Сюда относятся выделительная урография, холецистография.

Побочное действие РКС. Реакции организма на введение РКС наблюдаются примерно в 10% случаев. По характеру и степени тяжести они делятся на 3 группы:

    Осложнения, связанные с проявлением токсического действия на различные органы с функциональными и морфологическими их поражениями.

    Нервно-сосудистая реакция сопровождается субъективными ощущениями (тошнота, ощущение жара, общая слабость). Объективные симптомы при этом – рвота, понижение артериального давления.

    Индивидуальная непереносимость РКС с характерными симптомами:

    1. Со стороны центральной нервной системы – головные боли, головокружение, возбуждение, беспокойство, чувство страха, возникновение судорожных припадков, отек головного мозга.

      Кожные реакции – крапивница, экзема, зуд и др.

      Симптомы, связанные с нарушением деятельности сердечно-сосудистой системы – бледность кожных покровов, неприятные ощущения в области сердца, падение артериального давления, пароксизмальная тахи- или брадикардия, коллапс.

      Симптомы, связанные с нарушением дыхания – тахипноэ, диспноэ, приступ бронхиальной астмы, отек гортани, отек легких.

Реакции непереносимости РКС иногда носят необратимый характер и приводят к летальному исходу.

Механизмы развития системных реакций во всех случаях имеют сходный характер и обусловлены активацией системы комплемента под воздействием РКС, влиянием РКС на свертывающую систему крови, высвобождением гистамина и других биологически активных веществ, истинной иммунной реакцией или сочетанием этих процессов.

В легких случаях побочных реакций достаточно прекратить инъекцию РКС и все явления, как правило, проходят без терапии.

При развитии выраженных побочных реакций первичная неотложная помощь должна начинаться на месте производства исследования сотрудниками рентгеновского кабинета. Прежде всего, надо немедленно прекратить внутривенное введение рентгеноконтрастного препарата, вызвать врача, в обязанности которого входит оказание неотложной медицинской помощи, наладить надежный доступ к венозной системе, обеспечить проходимость дыхательных путей, для чего нужно повернуть голову больного на бок и фиксировать язык, а также обеспечить возможность проведения (при необходимости) ингаляции кислорода со скоростью 5 л/мин. При появлении анафилактических симптомов необходимо провести следующие неотложные противошоковые мероприятия:

− ввести внутримышечно 0,5-1,0 мл 0,1% раствора адреналина гидрохлорида;

− при отсутствии клинического эффекта с сохранением выраженной гипотонии (ниже 70 мм рт. ст.) начать внутривенную инфузию со скорость 10 мл/ч (15-20 капель в одну минуту) смеси из 5 мл 0,1% раствора адреналина гидрохлорида, разведенного в 400 мл 0,9% раствора натрия хлорида. При необходимости скорость инфузии может быть повышена до 85 мл/ч;

− при тяжелом состоянии пациента дополнительно внутривенно ввести один из препаратов глюкокортикоидов (метилпреднизолон 150 мг, дексаметазон 8-20 мг, гидрокортизона гемисукцинат 200-400 мг) и один из антигистаминных препаратов (димедрол 1%-2,0 мл, супрастин 2% -2,0 мл, тавегил 0,1%-2,0 мл). Введение пипольфена (дипразина) противопоказано в связи с возможностью развития гипотонии;

− при адреналинрезистентном бронхоспазме и приступе бронхиальной астмы внутривенно медленно ввести 10, 0 мл 2,4% раствора эуфиллина. В случае отсутствия эффекта повторно ввести такую же дозу эуфиллина.

В случае клинической смерти осуществлять искусственное дыхание «рот в рот» и непрямой массаж сердца.

Все противошоковые мероприятия необходимо проводить максимально быстро до нормализации артериального давления и восстановления сознания больного.

При развитии умеренных вазоактивных побочных реакций без существенного нарушения дыхания и кровообращения, а также при кожных проявлениях неотложная помощь может быть ограничена введением только антигистаминных препаратов и глюкокортикоидов.

При отеке гортани, наряду с этими препаратами, следует внутривенно ввести 0,5 мл 0,1% раствора адреналина и 40-80 мг лазикса, а также обеспечить ингаляцию увлажненного кислорода. После осуществления обязательной противошоковой терапии, независимо от тяжести состояния, больной должен быть госпитализирован для продолжения интенсивной терапии и проведения восстановительного лечения.

В связи с возможностью развития побочных реакций все рентгенологические кабинеты, в которых проводятся внутрисосудистые рентгеноконтрастные исследования, должны иметь инструменты, приборы и медикаменты, необходимые для оказания неотложной медицинской помощи.

Для профилактики побочного действия РКС накануне проведения рентгеноконтрастного исследования применяют премедикацию антигистаминными и глюкокортикоидными препаратами, а также проводят один из тестов для прогнозирования повышенной чувствительности больного к РКС. Наиболее оптимальными тестами являются: определение высвобождения гистамина из базофилов периферической крови при смешивании ее с РКС; содержания общего комплемента в сыворотке крови больных, назначенных для проведения рентгеноконтрастного обследования; отбор больных для премедикации путем определения уровней сывороточных иммуноглобулинов.

Среди более редких осложнений могут иметь место «водное» отравление при ирригоскопии у детей с мегаколон и газовая (либо жировая) эмболия сосудов.

Признаком «водного» отравления, когда быстро всасывается через стенки кишки в кровеносное русло большое количество воды и наступает дисбаланс электролитов и белков плазмы, могут быть тахикардия, цианоз, рвота, нарушение дыхания с остановкой сердца; может наступить смерть. Первая помощь при этом – внутривенное введение цельной крови или плазмы. Профилактикой осложнения является проведение ирригоскопии у детей взвесью бария в изотоническом растворе соли, вместо водной взвеси.

Признаки эмболии сосудов следующие: появление ощущения стеснения в груди, одышка, цианоз, урежение пульса и падение артериального давления, судороги, прекращение дыхания. При этом следует немедленно прекратить введение РКС, уложить больного в положение Тренделенбурга, приступить к искусственному дыханию и непрямому массажу сердца, ввести внутривенно 0,1% - 0,5 мл раствора адреналина и вызвать реанимационную бригаду для возможной интубации трахеи, осуществления аппаратного искусственного дыхания и проведения дальнейших лечебных мероприятий.

Частные рентгенологические методы. Флюорография – способ массового поточного рентгенологического обследования, состоящий в фотографировании рентгеновского изображения с просвечивающего экрана на флюорографическую пленку фотоаппаратом. Размер пленки 110×110 мм, 100×100 мм, реже − 70×70 мм. Исследование выполняют на специальном рентгеновском аппарате − флюорографе. В нем имеются флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения производится при помощи фотокамеры на рулонную пленку (рис. 1.8). Метод применяется при массовом обследовании для распознавания туберкулеза легких. Попутно могут быть обнаружены и другие заболевания. Флюорография более экономична и производительна, чем рентгенография, но существенно уступает ей по информативности. Доза излучения при флюорографии больше, чем при рентгенографии.

Рис. 1.8. Схема флюорографии. 1− рентгеновская трубка; 2 − объект; 3 − люминесцентный экран; 4− линзовая оптика; 5 − фотокамера.

Линейная томография предназначена для устранения суммационного характера рентгеновского изображения. В томографах для линейной томографии приводится в движение в противоположных направлениях рентгеновская трубка и кассета с пленкой (рис 1.9).

Во время перемещения трубки и кассеты в противоположных направлениях образуется ось движения трубки − слой, который остается как бы фиксированным, и на томографическом снимке детали этого слоя отображаются в виде тени с довольно резкими очертаниями, а ткани выше и ниже слоя оси движения получаются размазанными и не выявляются на снимке указанного слоя (рис. 1.10).

Линейные томограммы можно выполнять в сагиттальной, фронтальной и промежуточной плоскостях, что недостижимо при шаговой КТ.

Рентгенодиапевтика – лечебно-диагностические процедуры. Имеются в виду сочетанные рентгеноэндоскопические процедуры с лечебным вмешательством (интервенционная радиология).

Интервенционно-радиологические вмешательства в настоящее время включают: а) транскатетерные вмешательства на сердце, аорте, артериях и венах: реканализация сосудов, разобщение врожденных и приобретенных артериовенозных соустий, тромбэктомии, эндопротезирование, установка стентов и фильтров, эмболизация сосудов, закрытие дефектов межпредсердной и межжелудочковой перегородок, селективное введение лекарств в различные отделы сосудистой системы; б) чрескожное дренирование, пломбировка и склерозирование полостей различной локализации и происхождения, а также дренирование, дилатация, стентирование и эндопротезирование протоков разных органов (печени, поджелудочной железы, слюнной железы, слезноносового канала и пр.); в) дилатация, эндопротезирование, стентирование трахеи, бронхов, пищевода, кишки, дилатация кишечных стриктур; г) пренатальные инвазивные процедуры, лучевые вмешательства на плоде под контролем ультразвука, реканализация и стентирование маточных труб; д) удаление инородных тел и конкрементов различной природы и разной локализации. В качестве навигационного (направляющего) исследования, помимо рентгенологического, применяют ультразвуковой метод, а ультразвуковые аппараты снабжают специальными пункционными датчиками. Виды интервенционных вмешательств постоянно расширяются.

В конечном итоге, предметом изучения в рентгенологии является теневое изображение. Особенностями теневого рентгеновского изображения являются:

    Изображение, складывающееся из многих темных и светлых участков – соответственно областям неодинакового ослабления рентгеновых лучей в разных частях объекта.

    Размеры рентгеновского изображения всегда увеличены (кроме КТ), по сравнению с изучаемым объектом, и тем больше, чем дальше объект находится от пленки, и чем меньше фокусное расстояние (отстояние пленки от фокуса рентгеновской трубки) (рис. 1.11).

    Когда объект и пленка не в параллельных плоскостях, изображение искажается (рис. 1.12).

    Изображение суммационное (кроме томографии) (рис. 1.13). Следовательно, рентгеновские снимки должны быть произведены не менее, чем в двух взаимно перпендикулярных проекциях.

    Негативное изображение при рентгенографии и КТ.

Каждая ткань и патологические образования, выявляемые при лучевом

Рис. 1.13. Суммационный характер рентгеновского изображения при рентгенографии и рентгеноскопии. Субтракция (а) и суперпозиция (б) теней рентгеновского изображения.

исследовании, характеризуются строго определенными признаками, а именно: числом, положением, формой, размером, интенсивностью, структурой, характером контуров, наличием или отсутствием подвижности, динамикой во времени.

План :

1) Рентгенологические исследования. Сущность рентгенологических методов исследования. Методы рентгеновского исследования: рентгеноскопия , рентгенография, флюорография , рентгенотомография, компьютерная томография . Диагностическое значение рентгенологических исследований. Роль медицинской сестры в подготовке к рентгеновским исследованиям. Правила подготовки пациента к рентгеноскопии и рентгенографии желудка и 12-перстной кишки, бронхографии, холецистографии и холангиографии, ирригоскопии и графии, обзорной рентгенографии почек и экскреторной урографии.

Рентгенологическое исследование почечных лоханок (пиелография) проводится с помощью урографина, вводимого внутривенно. Рентгенографическое исследование бронхов (бронхография) проводится после распыления в бронхах контрастного вещества — йодолипола. Рентгеновское исследование сосудов (ангиография) осуществляется с помощью кардиотраста, вводимого внутривенно. В некоторых случа-ях контрастирование органа производится за счет воздуха, который вводится в окружающую ткань или полость. На-пример, при рентгеновском исследовании почек, когда есть подозрение на опухоль почки, вводится воздух в околопочечную клетчатку (пневморен); для обнаружения прорастания опухолью стенок желудка воздух вводится в брюшнуюполость, т. е. исследование проводится в условиях искус-ственного пневмоперитонеума.

Томография - послойная рентгенография. При томо-графии благодаря движению во время съемки с определен-ной скоростью рентгеновской трубки на пленке получа-ется резким изображение только тех структур, которые расположены на определенной, заранее заданной глуби-не. Тени органов, расположенных на меньшей или боль-шей глубине, получаются смазанными и не накладываются на основное изображение. Томография облегчает выявле-ние опухолей, воспалительных инфильтратов и других па-тологических образований. На томограмме указывается в сантиметрах — на какой глубине, считая от спины, сделан снимок: 2, 4, 6, 7, 8 см.

Одной из наиболее совершенных методик, дающих дос-товерную информацию, является компьютерная томогра-фия , позволяющая благодаря использованию ЭВМ диффе-ренцировать ткани и изменения в них, очень незначительно различающиеся по степени поглощения рентгеновского из-лучения.

Накануне любого инструментального исследования необходимо проинформировать в доступной форме больного о сути предстоящего исследования, необходимости его проведения и получить согласие на проведение этого исследования в письменном виде.

Подготовка больного к рентгенологическому исследованию желудка и двенадцатиперстной кишки. Это метод исследования, основанный на просвечивании рентгеновскими лучами полых органов с применением контрастного вещества (сульфата бария), позволяющий определить форму, величину, положение, подвижность желудка и 12-перстной кишки, локализацию язвы, опухоли, оценить рельеф слизистой оболочки и функциональное состояние желудка (его эвакуаторную способность).

Перед исследованием необходимо:

1. Провести инструктаж больного по следующему плану:

а) за 2-3 дня до исследования необходимо исключить из рациона газообразующие продукты (овощи, фрукты, черный хлеб, молоко);

б) накануне исследования в 18 оо - легкий ужин;

в) предупредить, что исследование проводится натощак, поэтому накануне исследования больной не должен есть и пить, принимать медикаменты и курить.

2. В случае упорных запоров по назначению врача вечером, накануне исследования, ставится очистительная клизма.

5. С целью контрастирования пищевода, желудка и 12-типерстной кишки - в рентгенологическом кабинете больной выпивает водную взвесь сульфата бария.

Выполняется с цельюдиагностики заболеваний желчного пузыря и желчевыводящих путей. Необходимо предупредить больного о возможности появления тошноты и жидкого стула как реакции на прием контрастного вещества. Нужно взвесить больного и рассчитать дозу контрастного вещества.

Проводится инструктаж больного по следующей схеме:

а) накануне исследования в течение трёх дней больной соблюдает диету без высокого содержания клетчатки (исключить капусту, овощи, хлеб грубого помола);

б) за 14 - 17 часов до исследования больной принимает контрастное вещество дробно (по 0,5 грамма) в течение часа каждые 10 минут, запивая сладким чаем;

в) в 18 оо - легкий ужин;

г) вечером за 2 часа до сна, если больной не может освободить кишечник естественным путем, поставить очистительную клизму;

д) утром в день исследования, больной должен натощак явиться в рентгенкабинет (не пить, не есть, не курить, не принимать лекарственные вещества). Взять с собой 2 сырых яйца. В рентгенкабинете делаются обзорные снимки, после чего больной принимает желчегонный завтрак (2 сырых яичных желтка или раствор сорбита (20г на стакан кипяченой воды) для желчегонного эффекта). Спустя 20 минут после приема желчегонного завтрака выполняется серия обзорных снимков через определенные промежутки времени в течение 2-х часов.

Подготовка больного к холеграфии (рентгенологическое исследование желчного пузыря желчевыводящих путей после внутривенного введения контрастного вещества).

1. Выяснить аллергологический анамнез (непереносимость препаратов йода). За 1 - 2 дня до исследования провести пробу на чувствительность к контрастному веществу. Для этого 1 мл контрастного вещества, подогретого до t=37-38 о С, ввести внутривенно, осуществлять наблюдение за состоянием больного. Более простой способ - это прием внутрь йодистого калия по столовой ложке 3 раза в день. При положительной аллергопробе появляется сыпь, зуд и т.д. В случае отсутствия реакции на введенное контрастное вещество продолжить подготовку больного к исследованию

2. Перед исследованием провести инструктаж больного по следующему плану:

2 - 3 дня до исследования - бесшлаковая диета.

В 18 оо - легкий ужин.

За 2 часа до сна - очистительная клизма, если больной не может освободить кишечник естественным путем.

- Исследование проводится натощак.

3. В рентгенкабинете ввести внутривенно медленно в течение 10 минут 20-30 мл контрастного вещества, подогретого до t = 37-38 0 С.

4. Больному выполняется серия обзорных снимков.

5. Обеспечить контроль за состоянием больного в течение суток после выполнения исследования с целью исключения замедленного типа аллергических реакций.

Подготовка больного к бронхографии и бронхоскопии .

Бронхография - исследование дыхательных путей, позволяющее получить рентгенографически изображение трахеи и бронхов после введения в них контрастного вещества с помощью бронхоскопа. Бронхоскопия - инструментальный, эндоскопический метод исследования трахеи и бронхов, позволяющий произвести осмотр слизистой оболочки трахеи, гортани, провести забор содержимого или промывных вод бронхов для бактериологического, цитологического и иммунологического исследований, а также проведение лечения.

1. Для исключения идиосинкразии к йодолиполу назначается однократно 1столовая ложка данного препарата внутрь за 2-3 дня до исследования и в течение этих 2-3-х дней больной принимает 0,1% раствор атропина по 6-8 капель 3 раза в день).

2. Если бронхография назначена женщине - предупредить, чтобы на ногтях не было лака, а на губах - помады.

3. Накануне вечером по назначению врача с седативной целью больному принять 10 мг седуксена (при нарушении сна - снотворное).

4. За 30-40 минут до выполнения манипуляции провести премедикацию по назначению врача: ввести подкожно 1мл - 0,1% раствора атропина и 1мл 2% раствора промедола (оформить запись в истории болезни и журнале учета наркотических средств).

Подготовка больного к рентгенологическому исследованию толстого кишечника (ирригоскопия, ирригография) , которое позволяет получить представление о длине, положении, тонусе, форме толстой кишки, выявить нарушения моторной функции.

1. Провести инструктаж больного по следующей схеме:

а) за три дня до исследования назначается бесшлаковая диета;б)если больного беспокоит вздутие кишечника, то можно порекомендовать в течение трех дней принимать настой ромашки, карболен или ферментные препараты;

в) накануне исследования в 15-16 часов больной получает 30 г касторового масла (при отсутствии поноса);

г) в 19 00 - легкий ужин; д) в 20 00 и 21 00 накануне исследования проводятся очистительные клизмы до эффекта «чистой воды»;

е) утром в день исследования не позднее, чем за 2 часа до ирригоскопии выполняются 2 очистительные клизмы с интервалом в один час;

ж) в день исследования больной не должен пить, есть, курить и принимать медикаменты. С помощью кружки Эсмарха в кабинете медсестрой вводится водная взвесь сульфата бария.

Подготовка больного к рентгенологическому исследованию почек (обзорный снимок, экскреторная урография).

1. Провести инструктаж по подготовке больного к исследованию:

Исключить из питания газообразующие продукты (овощи, фрукты, молочные, дрожжеподобные продукты, черный хлеб, фруктовые соки) в течение 3 дней до исследования.

Принимать при метеоризме по назначению врача активированный уголь.

Исключить прием пищи за 18-20 часов до исследования.

2. Накануне вечером около 22 00 часов и утром за 1,5-2 часа до исследования поставить очистительные клизмы

3. Предложить больному освободить мочевой пузырь непосредственно перед исследованием.

В рентгенологическом кабинете врач-рентгенолог выполняет обзорный снимок брюшной полости. Медицинская сестра осуществляет медленное (в течение 5-8 минут), постоянно контролируя самочувствие больного, введение контрастного вещества. Врачом- рентгенологом выполняется серия снимков.

Использование рентгеновских лучей с диагностической целью основано на способности их проникновения через ткани. Эта способность зависит от плотности органов и тканей, их толщины, химического состава. Поэтому проницаемость R-лучей различна и создает различную плотность теней на экране аппарата.

Эти методы позволяют изучить:

1) анатомические особенности органа

· его положение;

· размеры, форму, величину;

· наличие инородных тел, камней и опухолей.

2) исследовать функцию органа.

Современная рентгенологическая аппаратура позволяет получить пространственное изображение органа, видеозапись его работы, особым образом увеличить какую-либо его часть и т.д.

Виды рентгенологических методов исследования:

Рентгеноскопия – просвечивание тела рентгеновскими лучами, дающее изображение органов на экране рентгеновского аппарата.

Рентгенография – метод фотографирования с помощью рентгеновских лучей.

Томография – метод рентгенографии, позволяющий получать послойное изображение органов.

Флюорография – метод рентгенографии органов грудной клетки с получением снимков уменьшенных размеров на основе малого количества рентгеновских лучей.

Помните! Лишь при правильной и полной подготовке пациента инструментальное исследование дает достоверные результаты и является диагностически значимым!

Рентгенологическое исследование желудка

и двенадцатиперстной кишки

Цель:

· диагностика заболеваний желудка и двенадцатиперстной кишки.

Противопоказания:

· язвенные кровотечения;

· беременность, кормление грудью.

Оснащение :

· 150-200 мл взвеси сульфата бария;

· оснащения для очистительной клизмы;

· направление на исследование.

Порядок действий:

Этапы манипуляции Обоснование необходимости
1. Подготовка к манипуляции
1. Объяснить пациенту (членам семьи) цель и ход предстоящего исследования, получить информированное согласие. Обеспечение права пациента на информацию. Мотивация пациента к сотрудничеству. Дать пациенту письменную информацию, если он имеет трудности в обучении
2. Указать, к каким последствиям приведет нарушение рекомендаций медицинской сестры. Нарушения в подготовке приведут к затруднению исследования и неточности диагностики
3. Если пациент страдает метеоризмом, запорами – в течение 3-х дней до исследования назначается бесшлаковая диета № 4 (см. ниже), рекомендуется прием активированного угля. Перед рентгенологическим исследованием органов брюшной полости необходимо убрать «помехи» - скопления газов и каловых масс, затрудняющих проведение исследования. При вздутии кишечника вечером и утром (за 2 часа до исследования) можно поставить очистительную клизму.
4. Предупредить пациента: · легкий ужин накануне не позднее 19.00 (чай, белый хлеб, масло); · исследование проводится утром натощак, пациент не должен чистить зубы, принимать лекарства, курить, есть и пить. Обеспечение достоверности результата исследования.
5. Провести психологическую подготовку пациента к исследованию. Пациент должен быть уверен в безболезненности и безопасности предстоящего исследования.
6. В амбулаторных условиях предупредить пациента, чтобы он явился в рентгенологический кабинет утром, в назначенное врачом время. В стационарных условиях: проводить (или транспортировать) пациента в рентгенологический кабинет в назначенное время с направлением. Примечание: в направлении указать название метода исследования, Ф.И.О. пациента, возраст, адрес или номер истории болезни, диагноз, дату исследования.
  1. Выполнение манипуляции
1. В рентгенологическом кабинете пациент принимает внутрь взвесь сульфата бария в количестве 150-200 мл. В некоторых случаях доза контрастного вещества определяется врачом - рентгенологом.
2. Врач делает снимки.
  1. Окончание манипуляции
1. Напомнить пациенту о том, чтобы он доставил снимки лечащему врачу. В стационарных условиях: необходимо провести пациента в палату, обеспечить наблюдение и покой.

14645 0

Важной составной частью функционального анализа зубов, челюстей и ВНЧС является рентгенография. К рентгенологическим методам исследования относятся внутриротовая дентальная рентгенография, а также ряд методов внеротовой рентгенографии: панорамная рентгенография, ортопантомография, томография ВНЧС и телерентгенография.

На панорамной рентгенограмме видно изображение одной челюсти, на ортопантомограмме — обеих челюстей.

Телерентгенографию (рентгенография на расстоянии) применяют для изучения строения лицевого скелета. При рентгенографии ВНЧС используют методы Парма, Шюллера, а также томографию. Обзорные рентгенограммы малопригодны для функционального анализа: на них не видна суставная щель на всем протяжении, имеются проекционные искажения, наложения окружающих костных тканей.

Томография височно-нижнечелюстного сустава

Несомненные преимущества перед вышеназванными методами имеет томография (сагиттальная, фронтальная и аксиальная проекции), позволяющая видеть суставную щель, форму суставных поверхностей. Однако томография является срезом в одной плоскости и при этом исследовании невозможно оценить в целом положение и форму наружного и внутреннего полюсов головок ВНЧС.

Нечеткость суставных поверхностей на томограммах обусловлена наличием тени смазанных слоев. В области латерального полюса - это массив скуловой дуги, в области медиального полюса - каменистая часть височной кости. Томограмма бывает более четкой, если имеется срез в середине головки, а наибольшие изменения при патологии наблюдаются у полюсов головок.
На томограммах в сагиттальной проекции мы видим комбинацию смещения головок в вертикальной, горизонтальной и сагиттальной плоскостях. Например сужение суставной щели, обнаруживаемое на сагиттальной томограмме, может быть в результате смещения головки наружу, а не вверх, как принято считать; расширение суставной щели - смещение головки внутрь (медиально), а не только вниз (рис. 3.29, а).

Рис. 3.29. Сагиттальные томограммы ВНЧС и схема для их оценки. А - топография элементов ВНЧС справа (а) и слева (б) при смыкании челюстей в положении центральной (1), правой боковой (2) окклюзии и при открытом рте (3) в норме. Видна щель между костными элементами сустава - место для суставного диска; Б - схема для анализа сагиттальных томограмм: а - угол наклона заднего ската суставного бугорка к основной линии; 1 - переднесуставная щель; 2 - верхнесуставная щель; 3 - заднесустав-ная щель; 4 - высота суставного бугорка.

Расширение суставной щели на одной стороне и сужение ее на другой считают признаком смещения нижней челюсти в сторону, где суставная щель уже .

Внутренние и наружные отделы сустава определяются на фронтальных томограммах. Ввиду асимметрии расположения ВНЧС в пространстве лицевого черепа справа и слева на одной фронтальной томограмме не всегда удается получить изображение сустава с обеих сторон. Томограммы в аксиальной проекции применяют редко из-за сложной укладки пациента. В зависимости от задач исследования применяют томографию элементов ВНЧС в боковых проекциях в следующих положениях нижней челюсти: при максимальном смыкании челюстей; при максимальном открывании рта; в положении физиологического покоя нижней челюсти; в «привычной окклюзии».

При томографии в боковой проекции на томографе «Неодиагно-макс» укладывают больного на снимочный стол на живот, голову поворачивают в профиль таким образом, чтобы исследуемый сустав прилегал к кассете с пленкой. Сагиттальная плоскость черепа должна быть параллельна плоскости стола. При этом чаще всего используют глубину среза 2,5 см.

На томограммах ВНЧС в сагиттальной проекции при смыкании челюстей в положении центральной окклюзии в норме суставные головки занимают центрическое положение в суставных ямках. Контуры суставных поверхностей не изменены. Суставная щель в переднем, верхнем и заднем отделах симметрична справа и слева.

Средние размеры суставной щели (мм):

В переднем отделе - 2,2±0,5;
в верхнем отделе - 3,5±0,4;
в заднем отделе - 3,7+0,3.

На томограммах ВНЧС в сагиттальной проекции при открытом рте суставные головки располагаются против нижней трети суставных ямок или против вершин суставных бугров.

Для создания параллельности сагиттальной плоскости головы и плоскости стола томографа, неподвижности головы во время томографии и сохранения этого же положения при повторных исследованиях используют краниостат.

На томограммах в боковой проекции измеряют ширину отдельных участков суставной щели по методике И.И. Ужумецкене (рис. 3.29, б): оценивают размеры и симметричность суставных головок, высоту и наклон заднего ската суставных бугорков, амплитуду смещения суставных головок при переходе из положения центральной окклюзии в положение открытого рта.
Особый интерес представляет метод рентгенокинематографии ВНЧС. С помощью этого метода возможно изучение движения суставных головок в динамике [Петросов Ю.А., 1982].

Компьютерная томография

Компьютерная томография (КТ) позволяет получать прижизненные изображения тканевых структур на основании изучения степени поглощения рентгеновского излучения в исследуемой области. Принцип метода заключается в том, что исследуемый объект послойно просвечивается рентгеновским лучом в различных направлениях при движении рентгеновской трубки вокруг него. Непоглощенная часть излучения регистрируется с помощью специальных детекторов, сигналы от которых поступают в вычислительную систему (ЭВМ). После математической обработки полученных сигналов на ЭВМ строится изображение исследуемого слоя («среза») на матрице.

Высокая чувствительность метода КТ к изменениям рентгеновской плотности изучаемых тканей обусловлена тем, что получаемое изображение в отличие от обычного рентгеновского не искажается наложением изображений других структур, через которые проходит рентгеновский пучок. В то же время лучевая нагрузка на больного при КТ-исследовании ВНЧС не превышает таковую при обычной рентгенографии. По данным литературы, использование КТ и сочетание ее с другими дополнительными методами позволяют осуществить наиболее прецизионную диагностику, снизить лучевую нагрузку и решать те вопросы, которые решаются с трудом или совсем не решаются с помощью послойной рентгенографии.

Оценку степени поглощения излучения (рентгеновской плотности тканей) производят по относительной шкале коэффициентов поглощения (КП) рентгеновского излучения. В данной шкале за 0 ед. Н (Н - единица Хаунсфилда) принято поглощение в воде, за 1000 ед. Н. - в воздухе. Современные томографы позволяют улавливать различия плотностей в 4-5 ед. Н. На компьютерных томограммах более плотные участки, имеющие высокие значения КП, представляются светлыми, а менее плотные, имеющие низкие значения КП, темными.

С помощью современных компьютерных томографов III и IV поколений можно выделить слои толщиной 1,5 мм с моментальным воспроизведением изображения в черно-белом или цветном варианте, а также получить трехмерное реконструированное изображение исследуемой области. Метод позволяет бесконечно долго сохранять полученные томограммы на магнитных носителях и в любое время повторить их анализ посредством традиционных программ, заложенных в ЭВМ компьютерного томографа.

Преимущества КТ в диагностике патологии ВНЧС:

Полное воссоздание формы костных суставных поверхностей во всех плоскостях на основе аксиальных проекций (реконструктивное изображение);
обеспечение идентичности съемки ВНЧС справа и слева;
отсутствие наложений и проекционных искажений;
возможность изучения суставного диска и жевательных мышц;
воспроизведение изображения в любое время;
возможность измерения толщины суставных тканей и мышц и оценки ее с двух сторон.

Применение КТ для исследования ВНЧС и жевательных мышц впервые разработано в 1981 г. A.Hiils в диссертации, посвященной клинико-рентгенологическим исследованиям при функциональных нарушениях зубочелюстно-лицевой системы.

Основные показания к использованию КТ: переломы суставного отростка, краниофациальные врожденные аномалии, боковые смещения нижней челюсти, дегенеративные и воспалительные заболевания ВНЧС, опухоли ВНЧС, упорные суставные боли неясного генеза, неподдающиеся консервативной терапии.

КТ позволяет полностью воссоздать формы костных суставных поверхностей во всех плоскостях, не вызывает наложения изображений других структур и проекционных искажений [Хватова В.А., Корниенко В.И., 1991; Паутов И.Ю., 1995; Хватова В.А., 1996; Вязьмин А.Я., 1999; Westesson P., Brooks S., 1992, и др.]. Применение этого метода эффективно как для диагностики, так и дифференциальной диагностики органических изменений ВНЧС, не диагностируемых клинически. Решающее значение при этом имеет возможность оценки суставной головки в нескольких проекциях (прямые и реконструктивные срезы).

При дисфункции ВНЧС КТ-исследование в аксиальной проекции дает дополнительную информацию о состоянии костных тканей, положении продольных осей суставных головок, выявляет гипертрофию жевательных мышц (рис. 3.30).

КТ в сагиттальной проекции позволяет дифференцировать дисфункцию ВНЧС от других поражений сустава: травм, новообразований, воспалительных нарушений [Регtes R., Gross Sh., 1995, и др.].

На рис. 3.31 представлены КТ ВНЧС в сагиттальной проекции справа и слева и схемы к ним. Визуализировано нормальное положение суставных дисков.

Приводим пример использования КТ для диагностики заболевания ВНЧС.

Больная М ., 22 лет, обратилась с жалобами на боль и суставные щелчки справа при жевании в течение 6 лет. Во время обследования выявлено: при открывании рта нижняя челюсть смещается вправо, а затем зигзагообразно со щелчком влево, болезненная пальпация наружной крыловидной мышцы слева. Прикус ортогнатический с небольшим резцовым перекрытием, интактные зубные ряды, жевательные зубы справа стерты больше, чем слева; правосторонний тип жевания. При анализе функциональной окклюзии в полости рта и на моделях челюстей, установленных в артикулятор, выявлен балансирующий суперконтакт на дистальных скатах небного бугорка верхнего первого моляра (задержка стирания) и щечного бугорка второго нижнего моляра справа. На томограмме в сагиттальной проекции изменений не обнаружено. На КТ ВНЧС в той же проекции в положении центральной окклюзии смещение правой суставной головки назад, сужение заднесуставной щели, смещение вперед и деформация суставного диска (рис. 3.32, а). На КТ ВНЧС в аксиальной проекции толщина наружной крыловидной мышцы справа 13,8 мм, слева - 16,4 мм (рис. 3.32, б).

Диагноз: балансирующий суперконтакт небного бугорка 16 и щечного бугорка в левой боковой окклюзии,правосторонний тип жевания, гипертрофия наружной крыловидной мышцы слева, асимметрия размеров и положения суставных головок, мышечно-суставная дисфункция, дислокация кпереди диска ВНЧС справа, смещение суставной головки кзади.

Телерентгенография

Использование телерентгенографии в стоматологии позволило получать снимки с четкими контурами мягких и твердых структур лицевого скелета, проводить их метрический анализ и тем самым уточнять диагноз [Ужумецкене И.И., 1970; Трезубов В.Н., Фадеев Р.А., 1999, и др.].

Принцип метода заключается в получении рентгеновского снимка при большом фокусном расстоянии (1,5 м). При получении снимка с такого расстояния, с одной стороны, снижается лучевая нагрузка на пациента, с другой, уменьшается искажение лицевых структур. Применение цефалоста-тов обеспечивает получение идентичных снимков при повторных исследованиях.

Телерентгенограмма (ТРГ) в прямой проекции позволяет диагностировать аномалии зубочелюстной системы в трансверсальном направлении, в боковой проекции - в сагиттальном направлении. На ТРГ отображаются кости лицевого и мозгового черепа, контуры мягких тканей, что дает возможность изучить их соответствие. ТРГ используют как важный диагностический метод в ортодонтии, ортопедической стоматологии, челюстно-лице-вой ортопедии, ортогнатической хирургии. Применение ТРГ позволяет:
проводить диагностику различных заболеваний, в том числе аномалий и деформаций лицевого скелета;
планировать лечение этих заболеваний;
прогнозировать предполагаемые результаты лечения;
осуществлять контроль за ходом лечения;
объективно оценивать отдаленные результаты.

Так, при протезировании больных с деформациями окклюзионной поверхности зубных рядов использование ТРГ в боковой проекции дает возможность определить искомую протетическую плоскость, а следовательно, решить вопрос о степени сошлифовывания твердых тканей зубов и необходимости их девитализации.

При полном отсутствии зубов на телерентгенограмме можно на этапе постановки зубов проверить правильность нахождения окклюзионной поверхности.

Рентгеноцефалометрический анализ лица у пациентов с повышенной стираемостью зубов позволяет более точно дифференцировать форму данного заболевания, выбрать оптимальную тактику ортопедического лечения. Кроме того, оценив ТРГ, можно также получить информацию о степени атрофии альвеолярных частей верхней и нижней челюстей и определить конструкцию протеза.
Для расшифровки ТРГ снимок закрепляют на экране негатоскопа, прикрепляют к нему кальку, на которую переносят изображение.

Существует много методов анализа ТРГ в боковых проекциях. Одним из них является метод Шварца, основанный на использовании в качестве ориентира плоскости основания черепа. При этом можно определить:

Расположение челюстей по отношению к плоскости передней части основания черепа;
расположение ВНЧС по отношению к этой плоскости;
длину переднего основания че
репной ямки.

Анализ ТРГ - важный метод диагностики зубочелюстных аномалий, позволяющий выявить причины их формирования.

С помощью компьютерных средств можно не только повысить точность анализа ТРГ, сэкономить время их расшифровки, но и прогнозировать предполагаемые результаты лечения.

В.А.Хватова
Клиническая гнатология